Error Bounds for Discrete Minimizers of the Ginzburg–Landau Energy in the High-[math] Regime

IF 2.8 2区 数学 Q1 MATHEMATICS, APPLIED
Benjamin Dörich, Patrick Henning
{"title":"Error Bounds for Discrete Minimizers of the Ginzburg–Landau Energy in the High-[math] Regime","authors":"Benjamin Dörich, Patrick Henning","doi":"10.1137/23m1560938","DOIUrl":null,"url":null,"abstract":"SIAM Journal on Numerical Analysis, Volume 62, Issue 3, Page 1313-1343, June 2024. <br/> Abstract. In this work, we study discrete minimizers of the Ginzburg–Landau energy in finite element spaces. Special focus is given to the influence of the Ginzburg–Landau parameter [math]. This parameter is of physical interest as large values can trigger the appearance of vortex lattices. Since the vortices have to be resolved on sufficiently fine computational meshes, it is important to translate the size of [math] into a mesh resolution condition, which can be done through error estimates that are explicit with respect to [math] and the spatial mesh width [math]. For that, we first work in an abstract framework for a general class of discrete spaces, where we present convergence results in a problem-adapted [math]-weighted norm. Afterward we apply our findings to Lagrangian finite elements and a particular generalized finite element construction. In numerical experiments we confirm that our derived [math]- and [math]-error estimates are indeed optimal in [math] and [math].","PeriodicalId":49527,"journal":{"name":"SIAM Journal on Numerical Analysis","volume":"66 1","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2024-05-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"SIAM Journal on Numerical Analysis","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1137/23m1560938","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

SIAM Journal on Numerical Analysis, Volume 62, Issue 3, Page 1313-1343, June 2024.
Abstract. In this work, we study discrete minimizers of the Ginzburg–Landau energy in finite element spaces. Special focus is given to the influence of the Ginzburg–Landau parameter [math]. This parameter is of physical interest as large values can trigger the appearance of vortex lattices. Since the vortices have to be resolved on sufficiently fine computational meshes, it is important to translate the size of [math] into a mesh resolution condition, which can be done through error estimates that are explicit with respect to [math] and the spatial mesh width [math]. For that, we first work in an abstract framework for a general class of discrete spaces, where we present convergence results in a problem-adapted [math]-weighted norm. Afterward we apply our findings to Lagrangian finite elements and a particular generalized finite element construction. In numerical experiments we confirm that our derived [math]- and [math]-error estimates are indeed optimal in [math] and [math].
高[数学]区金兹堡-朗道能量离散最小值的误差边界
SIAM 数值分析期刊》,第 62 卷,第 3 期,第 1313-1343 页,2024 年 6 月。 摘要在这项工作中,我们研究了有限元空间中金兹堡-朗道能量的离散最小值。我们特别关注金兹堡-朗道参数[math]的影响。该参数具有重要的物理意义,因为较大的数值会引发涡旋晶格的出现。由于涡旋必须在足够精细的计算网格上解析,因此必须将[math]的大小转化为网格解析条件,这可以通过与[math]和空间网格宽度[math]相关的显式误差估计来实现。为此,我们首先在一个抽象框架内对一般离散空间进行研究,并在此基础上提出了与问题相适应的[math]加权规范的收敛结果。之后,我们将研究结果应用于拉格朗日有限元和一种特殊的广义有限元结构。在数值实验中,我们证实了我们得出的[数学]和[数学]误差估计确实是[数学]和[数学]中的最优估计。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
4.80
自引率
6.90%
发文量
110
审稿时长
4-8 weeks
期刊介绍: SIAM Journal on Numerical Analysis (SINUM) contains research articles on the development and analysis of numerical methods. Topics include the rigorous study of convergence of algorithms, their accuracy, their stability, and their computational complexity. Also included are results in mathematical analysis that contribute to algorithm analysis, and computational results that demonstrate algorithm behavior and applicability.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信