{"title":"Influence of aerosol–meteorology interactions on visibility during a wintertime heavily polluted episode in Central-East, China","authors":"Xin Zhang, Yue Wang, Zibo Zhuang, Chengduo Yuan","doi":"10.1002/met.2207","DOIUrl":null,"url":null,"abstract":"<p>Atmospheric visibility profoundly impacts daily life, and accurate prediction is crucial, particularly in conditions of low visibility characterized by high aerosol loading and humidity. This study employed the WRF-Chem model to simulate a severe wintertime haze pollution episode that transpired from January 17 to 19, 2010, in Central-East China (112–122° E, 34–42° N). The results reveal that excluding aerosol–meteorology interactions led to underestimated PM<sub>2.5</sub> concentrations and relative humidity in comparison with ground-based measurement data, accompanied by a significant overestimation of visibility. Aerosols can engage with meteorological elements, particularly humidity, resulting in positive feedback. Upon considering these feedback interactions, the simulation results showed an increase of 5.17% and 1.99% in PM<sub>2.5</sub> concentration and relative humidity, respectively, compared with the original simulation. This adjustment narrowed the bias between simulated and measured data. The overestimation of simulated visibility was reduced by 16% and 25% for the entire study period and the severe haze pollution period, respectively. These findings underscore the vital role of incorporating aerosol–meteorology interactions in visibility simulations using the WRF-Chem model. Notably, the inclusion of aerosol–meteorological feedback significantly enhances the accuracy of visibility predictions, particularly during heavily polluted periods.</p>","PeriodicalId":49825,"journal":{"name":"Meteorological Applications","volume":"31 3","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2024-05-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/met.2207","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Meteorological Applications","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/met.2207","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"METEOROLOGY & ATMOSPHERIC SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Atmospheric visibility profoundly impacts daily life, and accurate prediction is crucial, particularly in conditions of low visibility characterized by high aerosol loading and humidity. This study employed the WRF-Chem model to simulate a severe wintertime haze pollution episode that transpired from January 17 to 19, 2010, in Central-East China (112–122° E, 34–42° N). The results reveal that excluding aerosol–meteorology interactions led to underestimated PM2.5 concentrations and relative humidity in comparison with ground-based measurement data, accompanied by a significant overestimation of visibility. Aerosols can engage with meteorological elements, particularly humidity, resulting in positive feedback. Upon considering these feedback interactions, the simulation results showed an increase of 5.17% and 1.99% in PM2.5 concentration and relative humidity, respectively, compared with the original simulation. This adjustment narrowed the bias between simulated and measured data. The overestimation of simulated visibility was reduced by 16% and 25% for the entire study period and the severe haze pollution period, respectively. These findings underscore the vital role of incorporating aerosol–meteorology interactions in visibility simulations using the WRF-Chem model. Notably, the inclusion of aerosol–meteorological feedback significantly enhances the accuracy of visibility predictions, particularly during heavily polluted periods.
期刊介绍:
The aim of Meteorological Applications is to serve the needs of applied meteorologists, forecasters and users of meteorological services by publishing papers on all aspects of meteorological science, including:
applications of meteorological, climatological, analytical and forecasting data, and their socio-economic benefits;
forecasting, warning and service delivery techniques and methods;
weather hazards, their analysis and prediction;
performance, verification and value of numerical models and forecasting services;
practical applications of ocean and climate models;
education and training.