Tensor recovery in high-dimensional Ising models

IF 1.4 3区 数学 Q2 STATISTICS & PROBABILITY
Tianyu Liu , Somabha Mukherjee , Rahul Biswas
{"title":"Tensor recovery in high-dimensional Ising models","authors":"Tianyu Liu ,&nbsp;Somabha Mukherjee ,&nbsp;Rahul Biswas","doi":"10.1016/j.jmva.2024.105335","DOIUrl":null,"url":null,"abstract":"<div><p>The <span><math><mi>k</mi></math></span>-tensor Ising model is a multivariate exponential family on a <span><math><mi>p</mi></math></span>-dimensional binary hypercube for modeling dependent binary data, where the sufficient statistic consists of all <span><math><mi>k</mi></math></span>-fold products of the observations, and the parameter is an unknown <span><math><mi>k</mi></math></span>-fold tensor, designed to capture higher-order interactions between the binary variables. In this paper, we describe an approach based on a penalization technique that helps us recover the signed support of the tensor parameter with high probability, assuming that no entry of the true tensor is too close to zero. The method is based on an <span><math><msub><mrow><mi>ℓ</mi></mrow><mrow><mn>1</mn></mrow></msub></math></span>-regularized node-wise logistic regression, that recovers the signed neighborhood of each node with high probability. Our analysis is carried out in the high-dimensional regime, that allows the dimension <span><math><mi>p</mi></math></span> of the Ising model, as well as the interaction factor <span><math><mi>k</mi></math></span> to potentially grow to <span><math><mi>∞</mi></math></span> with the sample size <span><math><mi>n</mi></math></span>. We show that if the minimum interaction strength is not too small, then consistent recovery of the entire signed support is possible if one takes <span><math><mrow><mi>n</mi><mo>=</mo><mi>Ω</mi><mrow><mo>(</mo><msup><mrow><mrow><mo>(</mo><mi>k</mi><mo>!</mo><mo>)</mo></mrow></mrow><mrow><mn>8</mn></mrow></msup><msup><mrow><mi>d</mi></mrow><mrow><mn>3</mn></mrow></msup><mo>log</mo><mfenced><mrow><mfrac><mrow><mi>p</mi><mo>−</mo><mn>1</mn></mrow><mrow><mi>k</mi><mo>−</mo><mn>1</mn></mrow></mfrac></mrow></mfenced><mo>)</mo></mrow></mrow></math></span> samples, where <span><math><mi>d</mi></math></span> denotes the maximum degree of the hypernetwork in question. Our results are validated in two simulation settings, and applied on a real neurobiological dataset consisting of multi-array electro-physiological recordings from the mouse visual cortex, to model higher-order interactions between the brain regions.</p></div>","PeriodicalId":16431,"journal":{"name":"Journal of Multivariate Analysis","volume":null,"pages":null},"PeriodicalIF":1.4000,"publicationDate":"2024-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Multivariate Analysis","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0047259X24000423","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 0

Abstract

The k-tensor Ising model is a multivariate exponential family on a p-dimensional binary hypercube for modeling dependent binary data, where the sufficient statistic consists of all k-fold products of the observations, and the parameter is an unknown k-fold tensor, designed to capture higher-order interactions between the binary variables. In this paper, we describe an approach based on a penalization technique that helps us recover the signed support of the tensor parameter with high probability, assuming that no entry of the true tensor is too close to zero. The method is based on an 1-regularized node-wise logistic regression, that recovers the signed neighborhood of each node with high probability. Our analysis is carried out in the high-dimensional regime, that allows the dimension p of the Ising model, as well as the interaction factor k to potentially grow to with the sample size n. We show that if the minimum interaction strength is not too small, then consistent recovery of the entire signed support is possible if one takes n=Ω((k!)8d3logp1k1) samples, where d denotes the maximum degree of the hypernetwork in question. Our results are validated in two simulation settings, and applied on a real neurobiological dataset consisting of multi-array electro-physiological recordings from the mouse visual cortex, to model higher-order interactions between the brain regions.

高维伊辛模型中的张量恢复
k 张量 Ising 模型是 p 维二元超立方体上的多元指数族,用于对依赖性二元数据建模,其中充分统计量由观测值的所有 k 倍乘积组成,而参数是一个未知的 k 倍张量,旨在捕捉二元变量之间的高阶交互作用。在本文中,我们介绍了一种基于惩罚技术的方法,假设真实张量的任何条目都不太接近零,该方法可以帮助我们高概率地恢复张量参数的符号支持。该方法基于 ℓ1-regularized 节点逻辑回归,能高概率地恢复每个节点的有符号邻域。我们的分析是在高维条件下进行的,这使得伊辛模型的维数 p 以及交互因子 k 有可能随着样本量 n 的增大而增长到 ∞。我们的研究表明,如果最小交互强度不太小,那么只要采取 n=Ω((k!)8d3logp-1k-1) 样本(其中 d 表示相关超网络的最大度数),就有可能一致地恢复整个有符号支持。我们的结果在两个模拟环境中得到了验证,并应用于由小鼠视觉皮层多阵列电生理记录组成的真实神经生物学数据集,以模拟大脑区域之间的高阶交互。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Multivariate Analysis
Journal of Multivariate Analysis 数学-统计学与概率论
CiteScore
2.40
自引率
25.00%
发文量
108
审稿时长
74 days
期刊介绍: Founded in 1971, the Journal of Multivariate Analysis (JMVA) is the central venue for the publication of new, relevant methodology and particularly innovative applications pertaining to the analysis and interpretation of multidimensional data. The journal welcomes contributions to all aspects of multivariate data analysis and modeling, including cluster analysis, discriminant analysis, factor analysis, and multidimensional continuous or discrete distribution theory. Topics of current interest include, but are not limited to, inferential aspects of Copula modeling Functional data analysis Graphical modeling High-dimensional data analysis Image analysis Multivariate extreme-value theory Sparse modeling Spatial statistics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信