Leveraging climate and remote sensing metrics for predicting forest carbon stock using Bayesian geostatistical modelling under a projected climate warming in Zimbabwe

Tsikai S. Chinembiri , Onisimo Mutanga , Timothy Dube
{"title":"Leveraging climate and remote sensing metrics for predicting forest carbon stock using Bayesian geostatistical modelling under a projected climate warming in Zimbabwe","authors":"Tsikai S. Chinembiri ,&nbsp;Onisimo Mutanga ,&nbsp;Timothy Dube","doi":"10.1016/j.gecadv.2024.100010","DOIUrl":null,"url":null,"abstract":"<div><p>Climate change, driven by escalating carbon dioxide (<span><math><mrow><mi>C</mi><msub><mrow><mi>O</mi></mrow><mrow><mn>2</mn></mrow></msub></mrow></math></span>) emissions, poses a significant threat to forest ecosystems and the livelihoods of communities reliant on them, especially for the global south countries and regions like the eastern highlands of Zimbabwe. The 2000 land redistribution programme reduced buffer zones between ecologically sensitive forests and land reform beneficiaries near major carbon reservoirs. In light of these challenges, this study aimed to assess the potential effects of climate change on a strategically important plantation forest ecosystem in Zimbabwe's eastern highlands. Using data from the Coupled Model Inter-comparison Project Phase 6 (CMIP6) of the Intergovernmental Panel on Climate Change (IPCC), we modelled and predicted changes in forest carbon (C) stock density under different climate scenarios: current (1970–2000), SSP5–4.5, and SSP5–8.5. Employing a hierarchical Bayesian geostatistical approach, we compared the baseline scenario (1970–2000) with projected scenarios (RCP4.5 and RCP8.5) for 2075 to estimate changes in forest carbon stock distribution. Our results indicated a decline in carbon stock concentration under future climate scenarios, reflecting the adverse impact of greenhouse gas emissions on forest growth. We found that the projected range of forest carbon stock under the RCP8.5 scenario for 2075 is notably lower (<span><math><mrow><mn>2</mn><mo>≤</mo><mi>MgC</mi><msup><mrow><mi>ha</mi></mrow><mrow><mo>−</mo><mn>1</mn></mrow></msup><mo>≤</mo><mn>44.9</mn><mo>)</mo></mrow></math></span> than that of the baseline period (1970–2000) (<span><math><mrow><mn>1</mn><mo>≤</mo><mi>MgC</mi><msup><mrow><mi>ha</mi></mrow><mrow><mo>−</mo><mn>1</mn></mrow></msup><mo>≤</mo><mn>97</mn><mo>)</mo></mrow></math></span>, suggesting a substantial reduction in carbon storage. As the difference in posterior mean C stock (<span><math><mrow><msub><mrow><mover><mrow><mi>μ</mi></mrow><mo>̅</mo></mover></mrow><mrow><mn>1</mn></mrow></msub><mo>−</mo><msub><mrow><mover><mrow><mi>μ</mi></mrow><mo>̅</mo></mover></mrow><mrow><mn>2</mn></mrow></msub><mo>)</mo></mrow></math></span>, 52.1 MgCha<sup>-1</sup> is well above zero, we deduce that the posterior mean C stock distribution of the projected future RCP8.5 2075 climate projection is indeed credibly different from the current (1970–2000) climate scenario. Additionally, there is a high probability <span><math><mrow><mo>(</mo><mo>&gt;</mo><mn>90</mn><mo>%</mo><mo>)</mo></mrow></math></span> that forest plantations will be adversely affected by the business-as-usual climate warming projection. Overall, our findings highlight the urgent need for climate change mitigation strategies, such as reforestation programs and careful selection of tree species for plantations, to safeguard forest ecosystems and the communities dependent on them. These insights are crucial for informing effective adaptation measures in the face of future climate uncertainties.</p></div>","PeriodicalId":100586,"journal":{"name":"Global Environmental Change Advances","volume":"2 ","pages":"Article 100010"},"PeriodicalIF":0.0000,"publicationDate":"2024-05-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2950138524000068/pdfft?md5=981445355802533297a0efc2fc4856b4&pid=1-s2.0-S2950138524000068-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Global Environmental Change Advances","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2950138524000068","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Climate change, driven by escalating carbon dioxide (CO2) emissions, poses a significant threat to forest ecosystems and the livelihoods of communities reliant on them, especially for the global south countries and regions like the eastern highlands of Zimbabwe. The 2000 land redistribution programme reduced buffer zones between ecologically sensitive forests and land reform beneficiaries near major carbon reservoirs. In light of these challenges, this study aimed to assess the potential effects of climate change on a strategically important plantation forest ecosystem in Zimbabwe's eastern highlands. Using data from the Coupled Model Inter-comparison Project Phase 6 (CMIP6) of the Intergovernmental Panel on Climate Change (IPCC), we modelled and predicted changes in forest carbon (C) stock density under different climate scenarios: current (1970–2000), SSP5–4.5, and SSP5–8.5. Employing a hierarchical Bayesian geostatistical approach, we compared the baseline scenario (1970–2000) with projected scenarios (RCP4.5 and RCP8.5) for 2075 to estimate changes in forest carbon stock distribution. Our results indicated a decline in carbon stock concentration under future climate scenarios, reflecting the adverse impact of greenhouse gas emissions on forest growth. We found that the projected range of forest carbon stock under the RCP8.5 scenario for 2075 is notably lower (2MgCha144.9) than that of the baseline period (1970–2000) (1MgCha197), suggesting a substantial reduction in carbon storage. As the difference in posterior mean C stock (μ̅1μ̅2), 52.1 MgCha-1 is well above zero, we deduce that the posterior mean C stock distribution of the projected future RCP8.5 2075 climate projection is indeed credibly different from the current (1970–2000) climate scenario. Additionally, there is a high probability (>90%) that forest plantations will be adversely affected by the business-as-usual climate warming projection. Overall, our findings highlight the urgent need for climate change mitigation strategies, such as reforestation programs and careful selection of tree species for plantations, to safeguard forest ecosystems and the communities dependent on them. These insights are crucial for informing effective adaptation measures in the face of future climate uncertainties.

利用气候和遥感指标,采用贝叶斯地理统计建模法预测津巴布韦气候变暖预测下的森林碳储量
二氧化碳(CO2)排放量不断攀升导致的气候变化对森林生态系统和依赖森林生态系统的社区的生计构成了重大威胁,尤其是对全球南部国家和地区(如津巴布韦东部高地)而言。2000 年的土地重新分配计划减少了主要碳库附近生态敏感森林与土地改革受益者之间的缓冲区。鉴于这些挑战,本研究旨在评估气候变化对津巴布韦东部高地具有重要战略意义的人工林生态系统的潜在影响。利用政府间气候变化专门委员会(IPCC)耦合模式相互比较项目第 6 阶段(CMIP6)的数据,我们模拟并预测了不同气候情景下森林碳储量密度的变化:当前(1970-2000 年)、SSP5-4.5 和 SSP5-8.5。我们采用分层贝叶斯地理统计方法,比较了基准情景(1970-2000 年)和 2075 年的预测情景(RCP4.5 和 RCP8.5),以估计森林碳储量分布的变化。结果表明,在未来气候情景下,碳储量浓度下降,反映了温室气体排放对森林生长的不利影响。我们发现,在 2075 年 RCP8.5 情景下,森林碳储量的预测范围(2≤MgCha-1≤44.9)明显低于基线期(1970-2000 年)(1≤MgCha-1≤97),表明碳储量大幅减少。由于后验平均碳储量的差异(μ̅1-μ̅2)(52.1 MgCha-1)远高于零,我们推断未来 RCP8.5 2075 气候预测的后验平均碳储量分布与当前(1970-2000 年)气候情景确实存在可信的差异。此外,人工林很有可能(90%)受到 "一切照旧 "气候变暖预测的不利影响。总之,我们的研究结果凸显了气候变化减缓战略的迫切需要,如重新造林计划和谨慎选择人工林树种,以保护森林生态系统和依赖于它们的社区。面对未来气候的不确定性,这些见解对于制定有效的适应措施至关重要。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信