First draft reference genome and annotation of the alternative oil species Physaria fendleri.

IF 2.1 3区 生物学 Q3 GENETICS & HEREDITY
Christopher R Johnston, Patrick J Horn, Ana Paula Alonso
{"title":"First draft reference genome and annotation of the alternative oil species Physaria fendleri.","authors":"Christopher R Johnston, Patrick J Horn, Ana Paula Alonso","doi":"10.1093/g3journal/jkae114","DOIUrl":null,"url":null,"abstract":"<p><p>In the wake of increasing demand for renewable energy sources, plant-based sources including alternative oilseeds have come to the forefront of interest. Hydroxy fatty acids (HFAs), produced in a few oilseed species, are important chemical feed stocks for industrial applications. An integrated approach was taken to assemble the first draft genome of the alternative HFA producer Physaria fendleri (n = 6), an outcrossing species with high heterozygosity. Both de novo transcriptome assemblies and genome assemblies were produced with public and generated sequencing reads. Resulting intermediate assemblies were then scaffolded and patched with multiple data sources, followed by super-scaffolding onto a masked genome of Camelina laxa (n = 6). Despite a current lack of available resources for the physical mapping of genomic scaffolds of P. fendleri, topography of the genome with respect to repeat and gene content was preserved at the scaffold level and not significantly lost via super-scaffolding. Read representation, gene and genome completion statistics, and annotation results illustrated the creation of a functional draft genome and a tool for future research on alternative oil species.</p>","PeriodicalId":12468,"journal":{"name":"G3: Genes|Genomes|Genetics","volume":null,"pages":null},"PeriodicalIF":2.1000,"publicationDate":"2024-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11373644/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"G3: Genes|Genomes|Genetics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/g3journal/jkae114","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
引用次数: 0

Abstract

In the wake of increasing demand for renewable energy sources, plant-based sources including alternative oilseeds have come to the forefront of interest. Hydroxy fatty acids (HFAs), produced in a few oilseed species, are important chemical feed stocks for industrial applications. An integrated approach was taken to assemble the first draft genome of the alternative HFA producer Physaria fendleri (n = 6), an outcrossing species with high heterozygosity. Both de novo transcriptome assemblies and genome assemblies were produced with public and generated sequencing reads. Resulting intermediate assemblies were then scaffolded and patched with multiple data sources, followed by super-scaffolding onto a masked genome of Camelina laxa (n = 6). Despite a current lack of available resources for the physical mapping of genomic scaffolds of P. fendleri, topography of the genome with respect to repeat and gene content was preserved at the scaffold level and not significantly lost via super-scaffolding. Read representation, gene and genome completion statistics, and annotation results illustrated the creation of a functional draft genome and a tool for future research on alternative oil species.

替代油物种 Physaria fendleri 的参考基因组初稿和注释。
随着人们对可再生能源的需求日益增长,包括替代油籽在内的植物能源已成为人们关注的焦点。少数油籽物种产生的羟基脂肪酸(HFAs)是工业应用的重要化学原料。我们采用综合方法组装了另一种 HFA 生产者 Physaria fendleri(n = 6)的第一个基因组草案,这是一种杂合度很高的外交物种。从头开始的转录组组装和基因组组装都是利用公开的和生成的测序读数完成的。然后用多个数据源对生成的中间装配进行脚手架和修补,最后将超级脚手架叠加到荠属(n = 6)的屏蔽基因组上。尽管目前缺乏物理映射 Physaria fendleri 基因组支架的可用资源,但在支架水平上保留了基因组中重复和基因含量的拓扑结构,而且通过超级支架也没有明显丢失。读数表示、基因和基因组完成度统计以及注释结果表明,功能性基因组草案和替代油物种的未来研究工具已经建立。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
G3: Genes|Genomes|Genetics
G3: Genes|Genomes|Genetics GENETICS & HEREDITY-
CiteScore
5.10
自引率
3.80%
发文量
305
审稿时长
3-8 weeks
期刊介绍: G3: Genes, Genomes, Genetics provides a forum for the publication of high‐quality foundational research, particularly research that generates useful genetic and genomic information such as genome maps, single gene studies, genome‐wide association and QTL studies, as well as genome reports, mutant screens, and advances in methods and technology. The Editorial Board of G3 believes that rapid dissemination of these data is the necessary foundation for analysis that leads to mechanistic insights. G3, published by the Genetics Society of America, meets the critical and growing need of the genetics community for rapid review and publication of important results in all areas of genetics. G3 offers the opportunity to publish the puzzling finding or to present unpublished results that may not have been submitted for review and publication due to a perceived lack of a potential high-impact finding. G3 has earned the DOAJ Seal, which is a mark of certification for open access journals, awarded by DOAJ to journals that achieve a high level of openness, adhere to Best Practice and high publishing standards.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信