Monika Bjelčić, Oskar Aurelius, Jie Nan, Richard Neutze, Thomas Ursby
{"title":"Room-temperature serial synchrotron crystallography structure of Spinacia oleracea RuBisCO.","authors":"Monika Bjelčić, Oskar Aurelius, Jie Nan, Richard Neutze, Thomas Ursby","doi":"10.1107/S2053230X24004643","DOIUrl":null,"url":null,"abstract":"<p><p>Ribulose-1,5-bisphosphate carboxylase/oxygenase (RuBisCO) is the enzyme responsible for the first step of carbon dioxide (CO<sub>2</sub>) fixation in plants, which proceeds via the carboxylation of ribulose 1,5-biphosphate. Because of the enormous importance of this reaction in agriculture and the environment, there is considerable interest in the mechanism of fixation of CO<sub>2</sub> by RuBisCO. Here, a serial synchrotron crystallography structure of spinach RuBisCO is reported at 2.3 Å resolution. This structure is consistent with earlier single-crystal X-ray structures of this enzyme and the results are a good starting point for a further push towards time-resolved serial synchrotron crystallography in order to better understand the mechanism of the reaction.</p>","PeriodicalId":7029,"journal":{"name":"Acta crystallographica. Section F, Structural biology communications","volume":null,"pages":null},"PeriodicalIF":1.1000,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11189101/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta crystallographica. Section F, Structural biology communications","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1107/S2053230X24004643","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/5/29 0:00:00","PubModel":"Epub","JCR":"Q4","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
Ribulose-1,5-bisphosphate carboxylase/oxygenase (RuBisCO) is the enzyme responsible for the first step of carbon dioxide (CO2) fixation in plants, which proceeds via the carboxylation of ribulose 1,5-biphosphate. Because of the enormous importance of this reaction in agriculture and the environment, there is considerable interest in the mechanism of fixation of CO2 by RuBisCO. Here, a serial synchrotron crystallography structure of spinach RuBisCO is reported at 2.3 Å resolution. This structure is consistent with earlier single-crystal X-ray structures of this enzyme and the results are a good starting point for a further push towards time-resolved serial synchrotron crystallography in order to better understand the mechanism of the reaction.
核酮糖-1,5-二磷酸羧化酶/氧合酶(RuBisCO)是植物固定二氧化碳(CO2)的第一步,它通过核酮糖-1,5-二磷酸的羧化作用进行。由于这一反应在农业和环境中的重要性,人们对 RuBisCO 固定二氧化碳的机理产生了浓厚的兴趣。本文报告了分辨率为 2.3 Å 的菠菜 RuBisCO 序列同步辐射晶体学结构。该结构与该酶早期的单晶 X 射线结构一致,其结果为进一步推动时间分辨系列同步加速器晶体学研究以更好地了解反应机理提供了一个良好的起点。
期刊介绍:
Acta Crystallographica Section F is a rapid structural biology communications journal.
Articles on any aspect of structural biology, including structures determined using high-throughput methods or from iterative studies such as those used in the pharmaceutical industry, are welcomed by the journal.
The journal offers the option of open access, and all communications benefit from unlimited free use of colour illustrations and no page charges. Authors are encouraged to submit multimedia content for publication with their articles.
Acta Cryst. F has a dedicated online tool called publBio that is designed to make the preparation and submission of articles easier for authors.