EDGE-WIENER INDEX OF LEVEL-3 SIERPINSKI SKELETON NETWORK

Fractals Pub Date : 2024-05-14 DOI:10.1142/s0218348x24500816
CAIMIN DU, YIQI YAO, LIFENG XI
{"title":"EDGE-WIENER INDEX OF LEVEL-3 SIERPINSKI SKELETON NETWORK","authors":"CAIMIN DU, YIQI YAO, LIFENG XI","doi":"10.1142/s0218348x24500816","DOIUrl":null,"url":null,"abstract":"<p>The edge-Wiener index is an important topological index in Chemical Graph Theory, defined as the sum of distances among all pairs of edges. Fractal structures have received much attention from scientists because of their philosophical and aesthetic significance, and chemists have even attempted to synthesize various types of molecular fractal structures. The level-3 Sierpinski triangle is constructed similarly to the Sierpinski triangle and its skeleton networks have self-similarity. In this paper, by using the method of finite pattern, we obtain the edge-Wiener index of skeleton networks according to level-3 Sierpinski triangle. This provides insights for a better understanding of molecular fractal structures.</p>","PeriodicalId":501262,"journal":{"name":"Fractals","volume":"60 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-05-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fractals","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/s0218348x24500816","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The edge-Wiener index is an important topological index in Chemical Graph Theory, defined as the sum of distances among all pairs of edges. Fractal structures have received much attention from scientists because of their philosophical and aesthetic significance, and chemists have even attempted to synthesize various types of molecular fractal structures. The level-3 Sierpinski triangle is constructed similarly to the Sierpinski triangle and its skeleton networks have self-similarity. In this paper, by using the method of finite pattern, we obtain the edge-Wiener index of skeleton networks according to level-3 Sierpinski triangle. This provides insights for a better understanding of molecular fractal structures.

第三级西尔平斯基骨架网络的边-维纳指数
边-维纳指数是化学图论中的一个重要拓扑指数,定义为所有边对之间的距离之和。分形结构因其哲学和美学意义而备受科学家关注,化学家甚至尝试合成各种类型的分子分形结构。三级西尔平斯基三角形的构造与西尔平斯基三角形类似,其骨架网络具有自相似性。本文利用有限模式的方法,根据第 3 层 Sierpinski 三角形得到了骨架网络的边缘-维纳指数。这为更好地理解分子分形结构提供了启示。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信