Amy E Anderson, Kaustubh Parashar, Ke Jin, Julie Clor, Carlo E Stagnaro, Urvi Vani, Jaskirat Singh, Ada Chen, Yihong Guan, Priyanka Talukdar, Pavithra Sathishkumar, Damie J Juat, Hema Singh, Ritu Kushwaha, Xiaoning Zhao, Angelo Kaplan, Lisa Seitz, Matthew J Walters, Ester Fernandez-Salas, Nigel P C Walker, Christine E Bowman
{"title":"Characterization of AB598, a CD39 Enzymatic Inhibitory Antibody for the Treatment of Solid Tumors.","authors":"Amy E Anderson, Kaustubh Parashar, Ke Jin, Julie Clor, Carlo E Stagnaro, Urvi Vani, Jaskirat Singh, Ada Chen, Yihong Guan, Priyanka Talukdar, Pavithra Sathishkumar, Damie J Juat, Hema Singh, Ritu Kushwaha, Xiaoning Zhao, Angelo Kaplan, Lisa Seitz, Matthew J Walters, Ester Fernandez-Salas, Nigel P C Walker, Christine E Bowman","doi":"10.1158/1535-7163.MCT-23-0865","DOIUrl":null,"url":null,"abstract":"<p><p>AB598 is a CD39 inhibitory antibody being pursued for the treatment of solid tumors in combination with chemotherapy and immunotherapy. CD39 metabolizes extracellular adenosine triphosphate (eATP), an alarmin capable of promoting antitumor immune responses, into adenosine, an immuno-inhibitory metabolite. By inhibiting CD39, the consumption of eATP is reduced, resulting in a proinflammatory milieu in which eATP can activate myeloid cells to promote antitumor immunity. The preclinical characterization of AB598 provides a mechanistic rationale for combining AB598 with chemotherapy in the clinic. Chemotherapy can induce ATP release from tumor cells and, when preserved by AB598, both chemotherapy-induced eATP and exogenously added ATP promote the function of monocyte-derived dendritic cells via P2Y11 signaling. Inhibition of CD39 in the presence of ATP can promote inflammasome activation in in vitro-derived macrophages, an effect mediated by P2X7. In a MOLP8 murine xenograft model, AB598 results in full inhibition of intratumoral CD39 enzymatic activity, an increase in intratumoral ATP, a decrease of extracellular CD39 on tumor cells, and ultimately, control of tumor growth. In cynomolgus monkeys, systemic dosing of AB598 results in effective enzymatic inhibition in tissues, full peripheral and tissue target engagement, and a reduction in cell surface CD39 both in tissues and in the periphery. Taken together, these data support a promising therapeutic strategy of harnessing the eATP generated by standard-of-care chemotherapies to prime the tumor microenvironment for a productive antitumor immune response.</p>","PeriodicalId":18791,"journal":{"name":"Molecular Cancer Therapeutics","volume":" ","pages":"1471-1482"},"PeriodicalIF":5.3000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11443198/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Cancer Therapeutics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1158/1535-7163.MCT-23-0865","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ONCOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
AB598 is a CD39 inhibitory antibody being pursued for the treatment of solid tumors in combination with chemotherapy and immunotherapy. CD39 metabolizes extracellular adenosine triphosphate (eATP), an alarmin capable of promoting antitumor immune responses, into adenosine, an immuno-inhibitory metabolite. By inhibiting CD39, the consumption of eATP is reduced, resulting in a proinflammatory milieu in which eATP can activate myeloid cells to promote antitumor immunity. The preclinical characterization of AB598 provides a mechanistic rationale for combining AB598 with chemotherapy in the clinic. Chemotherapy can induce ATP release from tumor cells and, when preserved by AB598, both chemotherapy-induced eATP and exogenously added ATP promote the function of monocyte-derived dendritic cells via P2Y11 signaling. Inhibition of CD39 in the presence of ATP can promote inflammasome activation in in vitro-derived macrophages, an effect mediated by P2X7. In a MOLP8 murine xenograft model, AB598 results in full inhibition of intratumoral CD39 enzymatic activity, an increase in intratumoral ATP, a decrease of extracellular CD39 on tumor cells, and ultimately, control of tumor growth. In cynomolgus monkeys, systemic dosing of AB598 results in effective enzymatic inhibition in tissues, full peripheral and tissue target engagement, and a reduction in cell surface CD39 both in tissues and in the periphery. Taken together, these data support a promising therapeutic strategy of harnessing the eATP generated by standard-of-care chemotherapies to prime the tumor microenvironment for a productive antitumor immune response.
期刊介绍:
Molecular Cancer Therapeutics will focus on basic research that has implications for cancer therapeutics in the following areas: Experimental Cancer Therapeutics, Identification of Molecular Targets, Targets for Chemoprevention, New Models, Cancer Chemistry and Drug Discovery, Molecular and Cellular Pharmacology, Molecular Classification of Tumors, and Bioinformatics and Computational Molecular Biology. The journal provides a publication forum for these emerging disciplines that is focused specifically on cancer research. Papers are stringently reviewed and only those that report results of novel, timely, and significant research and meet high standards of scientific merit will be accepted for publication.