Establishing Neural Organoid Cultures for Investigating the Effects of Microgravity in Low-Earth Orbit (LEO).

Q4 Biochemistry, Genetics and Molecular Biology
Nicolette A Pirjanian, Kriti Kalpana, Ilya Kruglikov, Pinar Mesci, Jana Stoudemire, Paula Grisanti, Scott A Noggle, Jeanne F Loring, Valentina Fossati
{"title":"Establishing Neural Organoid Cultures for Investigating the Effects of Microgravity in Low-Earth Orbit (LEO).","authors":"Nicolette A Pirjanian, Kriti Kalpana, Ilya Kruglikov, Pinar Mesci, Jana Stoudemire, Paula Grisanti, Scott A Noggle, Jeanne F Loring, Valentina Fossati","doi":"10.1007/7651_2024_550","DOIUrl":null,"url":null,"abstract":"<p><p>Recent findings from studies involving astronauts and animal models indicate that microgravity increases immune cell activity and potentially alters the white and gray matter of the central nervous system (CNS). To further investigate the impact of microgravity on CNS cells, we established cultures of three-dimensional neural organoids containing isogenic microglia, the brain's resident immune cells, and sent them onboard the International Space Station. When using induced pluripotent stem cell (iPSC) lines from individuals affected by neuroinflammatory and neurodegenerative diseases such as multiple sclerosis (MS) and Parkinson's disease (PD), these cultures can provide novel insights into pathogenic pathways that may be exacerbated by microgravity. We have devised a cryovial culture strategy that enables organoids to be maintained through space travel and onboard the International Space Station (ISS) without the need for medium or carbon dioxide exchange. Here, we provide a comprehensive description of all the steps involved: generating various types of neural organoids, establishing long-term cultures, arranging plans for shipment to the Kennedy Space Center (KSC), and ultimately preparing organoids for launch into low-Earth orbit (LEO) and return to Earth for post-flight analyses.</p>","PeriodicalId":18490,"journal":{"name":"Methods in molecular biology","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-05-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Methods in molecular biology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/7651_2024_550","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
引用次数: 0

Abstract

Recent findings from studies involving astronauts and animal models indicate that microgravity increases immune cell activity and potentially alters the white and gray matter of the central nervous system (CNS). To further investigate the impact of microgravity on CNS cells, we established cultures of three-dimensional neural organoids containing isogenic microglia, the brain's resident immune cells, and sent them onboard the International Space Station. When using induced pluripotent stem cell (iPSC) lines from individuals affected by neuroinflammatory and neurodegenerative diseases such as multiple sclerosis (MS) and Parkinson's disease (PD), these cultures can provide novel insights into pathogenic pathways that may be exacerbated by microgravity. We have devised a cryovial culture strategy that enables organoids to be maintained through space travel and onboard the International Space Station (ISS) without the need for medium or carbon dioxide exchange. Here, we provide a comprehensive description of all the steps involved: generating various types of neural organoids, establishing long-term cultures, arranging plans for shipment to the Kennedy Space Center (KSC), and ultimately preparing organoids for launch into low-Earth orbit (LEO) and return to Earth for post-flight analyses.

建立用于研究低地轨道(LEO)微重力影响的神经器官培养物。
宇航员和动物模型的最新研究结果表明,微重力会增加免疫细胞的活性,并可能改变中枢神经系统(CNS)的白质和灰质。为了进一步研究微重力对中枢神经系统细胞的影响,我们建立了含有同源小胶质细胞(大脑的常驻免疫细胞)的三维神经器官组织培养物,并将它们送上了国际空间站。当使用来自神经炎症和神经退行性疾病(如多发性硬化(MS)和帕金森病(PD))患者的诱导多能干细胞(iPSC)系时,这些培养物能为微重力可能加剧的致病途径提供新的见解。我们设计了一种低温培养策略,使器官组织能够在太空旅行和国际空间站(ISS)上得到维持,而无需进行培养基或二氧化碳交换。在此,我们全面介绍了所有相关步骤:生成各种类型的神经器官组织、建立长期培养、安排运送到肯尼迪航天中心(KSC)的计划,以及最终准备将器官组织发射到低地球轨道(LEO)并返回地球进行飞行后分析。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Methods in molecular biology
Methods in molecular biology Biochemistry, Genetics and Molecular Biology-Genetics
CiteScore
2.00
自引率
0.00%
发文量
3536
期刊介绍: For over 20 years, biological scientists have come to rely on the research protocols and methodologies in the critically acclaimed Methods in Molecular Biology series. The series was the first to introduce the step-by-step protocols approach that has become the standard in all biomedical protocol publishing. Each protocol is provided in readily-reproducible step-by-step fashion, opening with an introductory overview, a list of the materials and reagents needed to complete the experiment, and followed by a detailed procedure that is supported with a helpful notes section offering tips and tricks of the trade as well as troubleshooting advice.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信