Targeting leukotriene biosynthesis to prevent atherosclerotic cardiovascular disease.

Conditioning medicine Pub Date : 2023-04-01
Xiaomeng Wang, Lohendran Baskaran, Mark Chan, William Boisvert, Derek J Hausenloy
{"title":"Targeting leukotriene biosynthesis to prevent atherosclerotic cardiovascular disease.","authors":"Xiaomeng Wang, Lohendran Baskaran, Mark Chan, William Boisvert, Derek J Hausenloy","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>Atherosclerotic cardiovascular disease (ASCVD) is the leading cause of death and disability worldwide. As such, new treatments are needed to prevent the onset and progression of atherosclerosis to improve outcomes in patients with coronary, cerebrovascular, and peripheral arterial disease. In this regard, inflammation is known to be a critical driver of atherosclerosis formation and progression, thus it is a viable target for vascular protection in patients at risk of developing ASCVD. Leukotrienes, key pro-inflammatory lipid mediators derived from arachidonic acid, are associated with atheroma inflammation and progression. Genetic mutations in key components of the leukotriene synthesis pathway, such as 5-lipoxygenase (5-LO) and 5-lipoxygenase-activating protein (FLAP), are associated with an increased risk of cardiovascular disease, and pharmacological inhibition of 5-LO and FLAP has been reported to prevent atheroma formation in pre-clinical and early clinical studies. In this article, we provide an overview of these studies and highlight the therapeutic potential of targeting leukotriene synthesis to prevent atheroma inflammation and progression and improve outcomes in patients at risk of ASCVD.</p>","PeriodicalId":72686,"journal":{"name":"Conditioning medicine","volume":"6 2","pages":"33-41"},"PeriodicalIF":0.0000,"publicationDate":"2023-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11126214/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Conditioning medicine","FirstCategoryId":"1085","ListUrlMain":"","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Atherosclerotic cardiovascular disease (ASCVD) is the leading cause of death and disability worldwide. As such, new treatments are needed to prevent the onset and progression of atherosclerosis to improve outcomes in patients with coronary, cerebrovascular, and peripheral arterial disease. In this regard, inflammation is known to be a critical driver of atherosclerosis formation and progression, thus it is a viable target for vascular protection in patients at risk of developing ASCVD. Leukotrienes, key pro-inflammatory lipid mediators derived from arachidonic acid, are associated with atheroma inflammation and progression. Genetic mutations in key components of the leukotriene synthesis pathway, such as 5-lipoxygenase (5-LO) and 5-lipoxygenase-activating protein (FLAP), are associated with an increased risk of cardiovascular disease, and pharmacological inhibition of 5-LO and FLAP has been reported to prevent atheroma formation in pre-clinical and early clinical studies. In this article, we provide an overview of these studies and highlight the therapeutic potential of targeting leukotriene synthesis to prevent atheroma inflammation and progression and improve outcomes in patients at risk of ASCVD.

以白三烯生物合成为目标,预防动脉粥样硬化性心血管疾病。
动脉粥样硬化性心血管疾病(ASCVD)是导致全球死亡和残疾的主要原因。因此,需要新的治疗方法来预防动脉粥样硬化的发生和发展,以改善冠状动脉、脑血管和外周动脉疾病患者的预后。在这方面,众所周知,炎症是动脉粥样硬化形成和发展的关键驱动因素,因此它是保护有患急性心血管疾病风险的患者血管的可行靶点。白三烯是从花生四烯酸中提取的关键促炎脂质介质,与动脉粥样硬化的炎症和进展有关。白三烯合成途径的关键成分(如 5-脂氧合酶(5-LO)和 5-脂氧合酶激活蛋白(FLAP))的基因突变与心血管疾病风险的增加有关,据报道,在临床前和早期临床研究中,药物抑制 5-LO 和 FLAP 可预防动脉粥样斑块的形成。在本文中,我们将对这些研究进行综述,并强调针对白三烯合成的治疗潜力,以防止动脉粥样斑块炎症和进展,改善有 ASCVD 风险的患者的预后。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信