Biomechanical instability of the brain-CSF interface in hydrocephalus.

IF 10.6 1区 医学 Q1 CLINICAL NEUROLOGY
Brain Pub Date : 2024-10-03 DOI:10.1093/brain/awae155
Phan Q Duy, Neel H Mehta, Kristopher T Kahle
{"title":"Biomechanical instability of the brain-CSF interface in hydrocephalus.","authors":"Phan Q Duy, Neel H Mehta, Kristopher T Kahle","doi":"10.1093/brain/awae155","DOIUrl":null,"url":null,"abstract":"<p><p>Hydrocephalus, characterized by progressive expansion of the CSF-filled ventricles (ventriculomegaly), is the most common reason for brain surgery. 'Communicating' (i.e. non-obstructive) hydrocephalus is classically attributed to a primary derangement in CSF homeostasis, such as choroid plexus-dependent CSF hypersecretion, impaired cilia-mediated CSF flow currents, or decreased CSF reabsorption via the arachnoid granulations or other pathways. Emerging data suggest that abnormal biomechanical properties of the brain parenchyma are an under-appreciated driver of ventriculomegaly in multiple forms of communicating hydrocephalus across the lifespan. We discuss recent evidence from human and animal studies that suggests impaired neurodevelopment in congenital hydrocephalus, neurodegeneration in elderly normal pressure hydrocephalus and, in all age groups, inflammation-related neural injury in post-infectious and post-haemorrhagic hydrocephalus, can result in loss of stiffness and viscoelasticity of the brain parenchyma. Abnormal brain biomechanics create barrier alterations at the brain-CSF interface that pathologically facilitates secondary enlargement of the ventricles, even at normal or low intracranial pressures. This 'brain-centric' paradigm has implications for the diagnosis, treatment and study of hydrocephalus from womb to tomb.</p>","PeriodicalId":9063,"journal":{"name":"Brain","volume":null,"pages":null},"PeriodicalIF":10.6000,"publicationDate":"2024-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11449143/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Brain","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1093/brain/awae155","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CLINICAL NEUROLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Hydrocephalus, characterized by progressive expansion of the CSF-filled ventricles (ventriculomegaly), is the most common reason for brain surgery. 'Communicating' (i.e. non-obstructive) hydrocephalus is classically attributed to a primary derangement in CSF homeostasis, such as choroid plexus-dependent CSF hypersecretion, impaired cilia-mediated CSF flow currents, or decreased CSF reabsorption via the arachnoid granulations or other pathways. Emerging data suggest that abnormal biomechanical properties of the brain parenchyma are an under-appreciated driver of ventriculomegaly in multiple forms of communicating hydrocephalus across the lifespan. We discuss recent evidence from human and animal studies that suggests impaired neurodevelopment in congenital hydrocephalus, neurodegeneration in elderly normal pressure hydrocephalus and, in all age groups, inflammation-related neural injury in post-infectious and post-haemorrhagic hydrocephalus, can result in loss of stiffness and viscoelasticity of the brain parenchyma. Abnormal brain biomechanics create barrier alterations at the brain-CSF interface that pathologically facilitates secondary enlargement of the ventricles, even at normal or low intracranial pressures. This 'brain-centric' paradigm has implications for the diagnosis, treatment and study of hydrocephalus from womb to tomb.

脑积水中大脑-CSF 接口的生物力学不稳定性。
脑积水的特点是充满脑脊液(CSF)的脑室进行性扩张(脑室肥大),是脑部手术最常见的原因。"沟通性"(即非梗阻性)脑积水通常是由于 CSF 平衡的原发性失调所致,如脉络丛依赖性 CSF 分泌过多、纤毛介导的 CSF 气流受损或通过蛛网膜肉芽或其他途径的 CSF 重吸收减少。新出现的数据表明,脑实质的异常生物力学特性是导致多种形式的沟通性脑积水中脑室肥大的一个未被重视的因素。我们讨论了人类和动物研究的最新证据,这些证据表明,先天性脑积水的神经发育受损、老年性正常压力脑积水的神经变性,以及在所有年龄组中,感染后和出血性脑积水后炎症相关的神经损伤,都可能导致脑实质的硬度和粘弹性丧失。异常的大脑生物力学会造成大脑-CSF 界面的屏障改变,从而在病理上促进脑室的继发性扩大,即使在颅内压正常或较低的情况下也是如此。这种 "以脑为中心 "的范式对脑积水的诊断、治疗和研究具有重要意义。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Brain
Brain 医学-临床神经学
CiteScore
20.30
自引率
4.10%
发文量
458
审稿时长
3-6 weeks
期刊介绍: Brain, a journal focused on clinical neurology and translational neuroscience, has been publishing landmark papers since 1878. The journal aims to expand its scope by including studies that shed light on disease mechanisms and conducting innovative clinical trials for brain disorders. With a wide range of topics covered, the Editorial Board represents the international readership and diverse coverage of the journal. Accepted articles are promptly posted online, typically within a few weeks of acceptance. As of 2022, Brain holds an impressive impact factor of 14.5, according to the Journal Citation Reports.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信