{"title":"Compression algorithm for colored de Bruijn graphs.","authors":"Amatur Rahman, Yoann Dufresne, Paul Medvedev","doi":"10.1186/s13015-024-00254-6","DOIUrl":null,"url":null,"abstract":"<p><p>A colored de Bruijn graph (also called a set of k-mer sets), is a set of k-mers with every k-mer assigned a set of colors. Colored de Bruijn graphs are used in a variety of applications, including variant calling, genome assembly, and database search. However, their size has posed a scalability challenge to algorithm developers and users. There have been numerous indexing data structures proposed that allow to store the graph compactly while supporting fast query operations. However, disk compression algorithms, which do not need to support queries on the compressed data and can thus be more space-efficient, have received little attention. The dearth of specialized compression tools has been a detriment to tool developers, tool users, and reproducibility efforts. In this paper, we develop a new tool that compresses colored de Bruijn graphs to disk, building on previous ideas for compression of k-mer sets and indexing colored de Bruijn graphs. We test our tool, called ESS-color, on various datasets, including both sequencing data and whole genomes. ESS-color achieves better compression than all evaluated tools and all datasets, with no other tool able to consistently achieve less than 44% space overhead. The software is available at http://github.com/medvedevgroup/ESSColor .</p>","PeriodicalId":50823,"journal":{"name":"Algorithms for Molecular Biology","volume":"19 1","pages":"20"},"PeriodicalIF":1.5000,"publicationDate":"2024-05-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11129398/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Algorithms for Molecular Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1186/s13015-024-00254-6","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
A colored de Bruijn graph (also called a set of k-mer sets), is a set of k-mers with every k-mer assigned a set of colors. Colored de Bruijn graphs are used in a variety of applications, including variant calling, genome assembly, and database search. However, their size has posed a scalability challenge to algorithm developers and users. There have been numerous indexing data structures proposed that allow to store the graph compactly while supporting fast query operations. However, disk compression algorithms, which do not need to support queries on the compressed data and can thus be more space-efficient, have received little attention. The dearth of specialized compression tools has been a detriment to tool developers, tool users, and reproducibility efforts. In this paper, we develop a new tool that compresses colored de Bruijn graphs to disk, building on previous ideas for compression of k-mer sets and indexing colored de Bruijn graphs. We test our tool, called ESS-color, on various datasets, including both sequencing data and whole genomes. ESS-color achieves better compression than all evaluated tools and all datasets, with no other tool able to consistently achieve less than 44% space overhead. The software is available at http://github.com/medvedevgroup/ESSColor .
期刊介绍:
Algorithms for Molecular Biology publishes articles on novel algorithms for biological sequence and structure analysis, phylogeny reconstruction, and combinatorial algorithms and machine learning.
Areas of interest include but are not limited to: algorithms for RNA and protein structure analysis, gene prediction and genome analysis, comparative sequence analysis and alignment, phylogeny, gene expression, machine learning, and combinatorial algorithms.
Where appropriate, manuscripts should describe applications to real-world data. However, pure algorithm papers are also welcome if future applications to biological data are to be expected, or if they address complexity or approximation issues of novel computational problems in molecular biology. Articles about novel software tools will be considered for publication if they contain some algorithmically interesting aspects.