{"title":"Interpreting disease genome-wide association studies and polygenetic risk scores given eligibility and study design considerations","authors":"Catherine Mary Schooling, Mary Beth Terry","doi":"10.1002/gepi.22567","DOIUrl":null,"url":null,"abstract":"<p>Genome-wide association studies (GWAS) have been helpful in identifying genetic variants predicting cancer risk and providing new insights into cancer biology. Increasing use of genetically informed care, as well as genetically informed prevention and treatment strategies, have also drawn attention to some of the inherent limitations of cancer genetic data. Specifically, genetic endowment is lifelong. However, those recruited into cancer studies tend to be middle-aged or older people, meaning the exposure most likely starts before recruitment, as opposed to exposure and recruitment aligning, as in a trial or a target trial. Studies in survivors can be biased as a result of depletion of the susceptibles, here specifically due to genetic vulnerability and the cancer of interest or a competing risk. In addition, including prevalent cases in a case-control study will make the genetics of survival with cancer look harmful (Neyman bias). Here, we describe ways of designing GWAS to maximize explanatory power and predictive utility, by reducing selection bias due to only recruiting survivors and reducing Neyman bias due to including prevalent cases alongside using other techniques, such as selection diagrams, age-stratification, and Mendelian randomization, to facilitate GWAS interpretability and utility.</p>","PeriodicalId":12710,"journal":{"name":"Genetic Epidemiology","volume":"48 8","pages":"468-472"},"PeriodicalIF":1.7000,"publicationDate":"2024-05-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Genetic Epidemiology","FirstCategoryId":"3","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/gepi.22567","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
引用次数: 0
Abstract
Genome-wide association studies (GWAS) have been helpful in identifying genetic variants predicting cancer risk and providing new insights into cancer biology. Increasing use of genetically informed care, as well as genetically informed prevention and treatment strategies, have also drawn attention to some of the inherent limitations of cancer genetic data. Specifically, genetic endowment is lifelong. However, those recruited into cancer studies tend to be middle-aged or older people, meaning the exposure most likely starts before recruitment, as opposed to exposure and recruitment aligning, as in a trial or a target trial. Studies in survivors can be biased as a result of depletion of the susceptibles, here specifically due to genetic vulnerability and the cancer of interest or a competing risk. In addition, including prevalent cases in a case-control study will make the genetics of survival with cancer look harmful (Neyman bias). Here, we describe ways of designing GWAS to maximize explanatory power and predictive utility, by reducing selection bias due to only recruiting survivors and reducing Neyman bias due to including prevalent cases alongside using other techniques, such as selection diagrams, age-stratification, and Mendelian randomization, to facilitate GWAS interpretability and utility.
期刊介绍:
Genetic Epidemiology is a peer-reviewed journal for discussion of research on the genetic causes of the distribution of human traits in families and populations. Emphasis is placed on the relative contribution of genetic and environmental factors to human disease as revealed by genetic, epidemiological, and biologic investigations.
Genetic Epidemiology primarily publishes papers in statistical genetics, a research field that is primarily concerned with development of statistical, bioinformatical, and computational models for analyzing genetic data. Incorporation of underlying biology and population genetics into conceptual models is favored. The Journal seeks original articles comprising either applied research or innovative statistical, mathematical, computational, or genomic methodologies that advance studies in genetic epidemiology. Other types of reports are encouraged, such as letters to the editor, topic reviews, and perspectives from other fields of research that will likely enrich the field of genetic epidemiology.