{"title":"Left-Cut-Percolation and Induced-Sidorenko Bigraphs","authors":"Leonardo N. Coregliano","doi":"10.1137/22m1526794","DOIUrl":null,"url":null,"abstract":"SIAM Journal on Discrete Mathematics, Volume 38, Issue 2, Page 1586-1629, June 2024. <br/> Abstract. A Sidorenko bigraph is one whose density in a bigraphon [math] is minimized precisely when [math] is constant. Several techniques in the literature to prove the Sidorenko property consist of decomposing (typically in a tree decomposition) the bigraph into smaller building blocks with stronger properties. One prominent such technique is that of [math]-decompositions of Conlon and Lee, which uses weakly Hölder (or weakly norming) bigraphs as building blocks. In turn, to obtain weakly Hölder bigraphs, it is typical to use the chain of implications reflection bigraph [math] cut-percolating bigraph [math] weakly Hölder bigraph. In an earlier result by the author with Razborov, we provided a generalization of [math]-decompositions, called reflective tree decompositions, that uses much weaker building blocks, called induced-Sidorenko bigraphs, to also obtain Sidorenko bigraphs. In this paper, we show that “left-sided” versions of the concepts of reflection bigraph and cut-percolating bigraph yield a similar chain of implications: left-reflection bigraph [math] left-cut-percolating bigraph [math] induced-Sidorenko bigraph. We also show that under mild hypotheses the “left-sided” analogue of the weakly Hölder property (which is also obtained via a similar chain of implications) can be used to improve bounds on another result of Conlon and Lee that roughly says that bigraphs with enough vertices on the right side of each realized degree have the Sidorenko property.","PeriodicalId":49530,"journal":{"name":"SIAM Journal on Discrete Mathematics","volume":null,"pages":null},"PeriodicalIF":0.9000,"publicationDate":"2024-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"SIAM Journal on Discrete Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1137/22m1526794","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
SIAM Journal on Discrete Mathematics, Volume 38, Issue 2, Page 1586-1629, June 2024. Abstract. A Sidorenko bigraph is one whose density in a bigraphon [math] is minimized precisely when [math] is constant. Several techniques in the literature to prove the Sidorenko property consist of decomposing (typically in a tree decomposition) the bigraph into smaller building blocks with stronger properties. One prominent such technique is that of [math]-decompositions of Conlon and Lee, which uses weakly Hölder (or weakly norming) bigraphs as building blocks. In turn, to obtain weakly Hölder bigraphs, it is typical to use the chain of implications reflection bigraph [math] cut-percolating bigraph [math] weakly Hölder bigraph. In an earlier result by the author with Razborov, we provided a generalization of [math]-decompositions, called reflective tree decompositions, that uses much weaker building blocks, called induced-Sidorenko bigraphs, to also obtain Sidorenko bigraphs. In this paper, we show that “left-sided” versions of the concepts of reflection bigraph and cut-percolating bigraph yield a similar chain of implications: left-reflection bigraph [math] left-cut-percolating bigraph [math] induced-Sidorenko bigraph. We also show that under mild hypotheses the “left-sided” analogue of the weakly Hölder property (which is also obtained via a similar chain of implications) can be used to improve bounds on another result of Conlon and Lee that roughly says that bigraphs with enough vertices on the right side of each realized degree have the Sidorenko property.
期刊介绍:
SIAM Journal on Discrete Mathematics (SIDMA) publishes research papers of exceptional quality in pure and applied discrete mathematics, broadly interpreted. The journal''s focus is primarily theoretical rather than empirical, but the editors welcome papers that evolve from or have potential application to real-world problems. Submissions must be clearly written and make a significant contribution.
Topics include but are not limited to:
properties of and extremal problems for discrete structures
combinatorial optimization, including approximation algorithms
algebraic and enumerative combinatorics
coding and information theory
additive, analytic combinatorics and number theory
combinatorial matrix theory and spectral graph theory
design and analysis of algorithms for discrete structures
discrete problems in computational complexity
discrete and computational geometry
discrete methods in computational biology, and bioinformatics
probabilistic methods and randomized algorithms.