Scalar conservation law in a bounded domain with strong source at boundary

Lu Xu
{"title":"Scalar conservation law in a bounded domain with strong source at boundary","authors":"Lu Xu","doi":"10.1007/s00030-024-00959-y","DOIUrl":null,"url":null,"abstract":"<p>We consider a scalar conservation law with source in a bounded open interval <span>\\(\\Omega \\subseteq \\mathbb R\\)</span>. The equation arises from the macroscopic evolution of an interacting particle system. The source term models an external effort driving the solution to a given function <span>\\(\\varrho \\)</span> with an intensity function <span>\\(V:\\Omega \\rightarrow \\mathbb R_+\\)</span> that grows to infinity at <span>\\(\\partial \\Omega \\)</span>. We define the entropy solution <span>\\(u \\in L^\\infty \\)</span> and prove the uniqueness. When <i>V</i> is integrable, <i>u</i> satisfies the boundary conditions introduced by F. Otto (C. R. Acad. Sci. Paris, 322(1):729–734, 1996), which allows the solution to attain values at <span>\\(\\partial \\Omega \\)</span> different from the given boundary data. When the integral of <i>V</i> blows up, <i>u</i> satisfies an energy estimate and presents essential continuity at <span>\\(\\partial \\Omega \\)</span> in a weak sense.</p>","PeriodicalId":501665,"journal":{"name":"Nonlinear Differential Equations and Applications (NoDEA)","volume":"61 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-05-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nonlinear Differential Equations and Applications (NoDEA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s00030-024-00959-y","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We consider a scalar conservation law with source in a bounded open interval \(\Omega \subseteq \mathbb R\). The equation arises from the macroscopic evolution of an interacting particle system. The source term models an external effort driving the solution to a given function \(\varrho \) with an intensity function \(V:\Omega \rightarrow \mathbb R_+\) that grows to infinity at \(\partial \Omega \). We define the entropy solution \(u \in L^\infty \) and prove the uniqueness. When V is integrable, u satisfies the boundary conditions introduced by F. Otto (C. R. Acad. Sci. Paris, 322(1):729–734, 1996), which allows the solution to attain values at \(\partial \Omega \) different from the given boundary data. When the integral of V blows up, u satisfies an energy estimate and presents essential continuity at \(\partial \Omega \) in a weak sense.

边界强源有界域中的标量守恒定律
我们考虑一个标量守恒定律,其源点位于一个有界的开放区间(\Omega \subseteq \mathbb R\ )。该方程源于相互作用粒子系统的宏观演化。源项模拟的是一种外部作用,它将解驱动为一个给定的函数(\varrho \),其强度函数(V:\Omega \rightarrow \mathbb R_+\)在\(\partial \Omega \)处增长到无穷大。我们定义了熵解 \(u \in L^\infty \) 并证明了其唯一性。当 V 可积分时,u 满足 F. Otto 引入的边界条件(C. R. Acad.Sci. Paris, 322(1):729-734, 1996),它允许解在不同于给定边界数据的 \(partial \Omega \)处取值。当 V 的积分爆炸时,u 满足能量估计,并在\(\partial \Omega \)处呈现弱意义上的基本连续性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信