Deep Compressed Video Super-Resolution With Guidance of Coding Priors

IF 3.2 1区 计算机科学 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC
Qiang Zhu;Feiyu Chen;Yu Liu;Shuyuan Zhu;Bing Zeng
{"title":"Deep Compressed Video Super-Resolution With Guidance of Coding Priors","authors":"Qiang Zhu;Feiyu Chen;Yu Liu;Shuyuan Zhu;Bing Zeng","doi":"10.1109/TBC.2024.3394291","DOIUrl":null,"url":null,"abstract":"Compressed video super-resolution (VSR) is employed to generate high-resolution (HR) videos from low-resolution (LR) compressed videos. Recently, some compressed VSR methods have adopted coding priors, such as partition maps, compressed residual frames, predictive pictures and motion vectors, to generate HR videos. However, these methods disregard the design of modules according to the specific characteristics of coding information, which limits the application efficiency of coding priors. In this paper, we propose a deep compressed VSR network that effectively introduces coding priors to construct high-quality HR videos. Specifically, we design a partition-guided feature extraction module to extract features from the LR video with the guidance of the partition average image. Moreover, we separate the video features into sparse features and dense features according to the energy distribution of the compressed residual frame to achieve feature enhancement. Additionally, we construct a temporal attention-based feature fusion module to use motion vectors and predictive pictures to eliminate motion errors between frames and temporally fuse features. Based on these modules, the coding priors are effectively employed in our model for constructing high-quality HR videos. The experimental results demonstrate that our method achieves better performance and lower complexity than the state-of-the-arts.","PeriodicalId":13159,"journal":{"name":"IEEE Transactions on Broadcasting","volume":"70 2","pages":"505-515"},"PeriodicalIF":3.2000,"publicationDate":"2024-03-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Broadcasting","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10536024/","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

Compressed video super-resolution (VSR) is employed to generate high-resolution (HR) videos from low-resolution (LR) compressed videos. Recently, some compressed VSR methods have adopted coding priors, such as partition maps, compressed residual frames, predictive pictures and motion vectors, to generate HR videos. However, these methods disregard the design of modules according to the specific characteristics of coding information, which limits the application efficiency of coding priors. In this paper, we propose a deep compressed VSR network that effectively introduces coding priors to construct high-quality HR videos. Specifically, we design a partition-guided feature extraction module to extract features from the LR video with the guidance of the partition average image. Moreover, we separate the video features into sparse features and dense features according to the energy distribution of the compressed residual frame to achieve feature enhancement. Additionally, we construct a temporal attention-based feature fusion module to use motion vectors and predictive pictures to eliminate motion errors between frames and temporally fuse features. Based on these modules, the coding priors are effectively employed in our model for constructing high-quality HR videos. The experimental results demonstrate that our method achieves better performance and lower complexity than the state-of-the-arts.
利用编码先验的指导实现深度压缩视频超分辨率
压缩视频超分辨率(VSR)用于从低分辨率(LR)压缩视频生成高分辨率(HR)视频。最近,一些压缩 VSR 方法采用了编码先验(如分区图、压缩残留帧、预测图片和运动向量)来生成高分辨率视频。然而,这些方法忽略了根据编码信息的具体特点设计模块,限制了编码前置的应用效率。在本文中,我们提出了一种深度压缩 VSR 网络,它能有效地引入编码先验来构建高质量的 HR 视频。具体来说,我们设计了一个分区引导的特征提取模块,在分区平均图像的引导下从 LR 视频中提取特征。此外,我们还根据压缩残留帧的能量分布,将视频特征分为稀疏特征和密集特征,以实现特征增强。此外,我们还构建了基于时间注意力的特征融合模块,利用运动向量和预测图片消除帧间的运动误差,并对特征进行时间融合。在这些模块的基础上,我们的模型有效地利用了编码先验来构建高质量的 HR 视频。实验结果表明,我们的方法比现有技术取得了更好的性能和更低的复杂度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
IEEE Transactions on Broadcasting
IEEE Transactions on Broadcasting 工程技术-电信学
CiteScore
9.40
自引率
31.10%
发文量
79
审稿时长
6-12 weeks
期刊介绍: The Society’s Field of Interest is “Devices, equipment, techniques and systems related to broadcast technology, including the production, distribution, transmission, and propagation aspects.” In addition to this formal FOI statement, which is used to provide guidance to the Publications Committee in the selection of content, the AdCom has further resolved that “broadcast systems includes all aspects of transmission, propagation, and reception.”
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信