Global Stabilization of a Bounded Controlled Lorenz System

IF 1.9 4区 数学 Q2 MATHEMATICS, INTERDISCIPLINARY APPLICATIONS
Héctor Martínez Pérez, Julio Solís-Daun
{"title":"Global Stabilization of a Bounded Controlled Lorenz System","authors":"Héctor Martínez Pérez, Julio Solís-Daun","doi":"10.1142/s0218127424500895","DOIUrl":null,"url":null,"abstract":"<p>In this work, we present a method for the <i>Global Asymptotic Stabilization</i> (GAS) of an affine control chaotic Lorenz system, via <i>admissible</i> (bounded and regular) feedback controls, where the control bounds are given by a class of (convex) polytopes. The proposed control design method is based on the <i>control Lyapunov function</i> (CLF) theory introduced in [Artstein, 1983; Sontag, 1998]. Hence, we first recall, with parameters including those in [Lorenz, 1963], that these equations are <i>point-dissipative</i>, i.e. there is an explicit <i>absorbing ball</i><span><math altimg=\"eq-00002.gif\" display=\"inline\" overflow=\"scroll\"><mi mathvariant=\"cal\">ℬ</mi></math></span><span></span> given by the level set of a certain Lyapunov function, <span><math altimg=\"eq-00003.gif\" display=\"inline\" overflow=\"scroll\"><msub><mrow><mi>V</mi></mrow><mrow><mi>∞</mi></mrow></msub><mo stretchy=\"false\">(</mo><mi>x</mi><mo stretchy=\"false\">)</mo></math></span><span></span>. However, since the minimum point of <span><math altimg=\"eq-00004.gif\" display=\"inline\" overflow=\"scroll\"><msub><mrow><mi>V</mi></mrow><mrow><mi>∞</mi></mrow></msub><mo stretchy=\"false\">(</mo><mi>x</mi><mo stretchy=\"false\">)</mo></math></span><span></span> does not coincide with any rest point of Lorenz system, we apply <i>a modified</i> solution to the “uniting CLF problem” (to unify local (possibly optimal) controls with global ones, proposed in [Andrieu &amp; Prieur, 2010]) in order to obtain a CLF <span><math altimg=\"eq-00005.gif\" display=\"inline\" overflow=\"scroll\"><mi>V</mi><mo stretchy=\"false\">(</mo><mi>x</mi><mo stretchy=\"false\">)</mo></math></span><span></span> for the affine system with minimum at a desired equilibrium point. Finally, we achieve the GAS of “any” rest point of this system via bounded and <i>regular</i> feedback controls by using the proposed CLF method, which also contains the following controllers: (i) <i>damping controls</i> outside <span><math altimg=\"eq-00006.gif\" display=\"inline\" overflow=\"scroll\"><mi mathvariant=\"cal\">ℬ</mi></math></span><span></span>, so they collaborate with the beneficial stable free dynamics, and (ii) (possibly optimal) <i>feedback controls</i> inside <span><math altimg=\"eq-00007.gif\" display=\"inline\" overflow=\"scroll\"><mi mathvariant=\"cal\">ℬ</mi></math></span><span></span> that stabilize the control system at “any” desired rest point of the (unforced) Lorenz system.</p>","PeriodicalId":50337,"journal":{"name":"International Journal of Bifurcation and Chaos","volume":null,"pages":null},"PeriodicalIF":1.9000,"publicationDate":"2024-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Bifurcation and Chaos","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1142/s0218127424500895","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

In this work, we present a method for the Global Asymptotic Stabilization (GAS) of an affine control chaotic Lorenz system, via admissible (bounded and regular) feedback controls, where the control bounds are given by a class of (convex) polytopes. The proposed control design method is based on the control Lyapunov function (CLF) theory introduced in [Artstein, 1983; Sontag, 1998]. Hence, we first recall, with parameters including those in [Lorenz, 1963], that these equations are point-dissipative, i.e. there is an explicit absorbing ball given by the level set of a certain Lyapunov function, V(x). However, since the minimum point of V(x) does not coincide with any rest point of Lorenz system, we apply a modified solution to the “uniting CLF problem” (to unify local (possibly optimal) controls with global ones, proposed in [Andrieu & Prieur, 2010]) in order to obtain a CLF V(x) for the affine system with minimum at a desired equilibrium point. Finally, we achieve the GAS of “any” rest point of this system via bounded and regular feedback controls by using the proposed CLF method, which also contains the following controllers: (i) damping controls outside , so they collaborate with the beneficial stable free dynamics, and (ii) (possibly optimal) feedback controls inside that stabilize the control system at “any” desired rest point of the (unforced) Lorenz system.

有界受控洛伦兹系统的全局稳定
在这项工作中,我们提出了一种通过可接受(有界和规则)反馈控制实现仿射控制混沌洛伦兹系统全局渐近稳定(GAS)的方法,其中控制边界由一类(凸)多面体给出。所提出的控制设计方法基于 [Artstein, 1983; Sontag, 1998] 中介绍的控制 Lyapunov 函数 (CLF) 理论。因此,我们首先回顾一下,在参数包括 [Lorenz, 1963] 中的参数的情况下,这些方程是点消散的,即存在一个明确的吸收球ℬ,该吸收球由某个 Lyapunov 函数的水平集 V∞(x) 给出。然而,由于 V∞(x)的最小点并不与洛伦兹系统的任何静止点重合,我们应用了 "联合 CLF 问题"(将局部控制(可能是最优控制)与全局控制统一起来,[Andrieu & Prieur, 2010] 中提出)的修正解,以获得仿射系统的 CLF V(x),其最小值位于所需的平衡点。最后,我们利用所提出的 CLF 方法,通过有界和规则反馈控制实现该系统 "任意 "静止点的 GAS,该方法还包含以下控制器:(i) ℬ 外的阻尼控制,因此它们与有利的稳定自由动力学相协作;(ii) ℬ 内的(可能是最优的)反馈控制,可将控制系统稳定在(非强迫的)洛伦兹系统的 "任意 "期望静止点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
International Journal of Bifurcation and Chaos
International Journal of Bifurcation and Chaos 数学-数学跨学科应用
CiteScore
4.10
自引率
13.60%
发文量
237
审稿时长
2-4 weeks
期刊介绍: The International Journal of Bifurcation and Chaos is widely regarded as a leading journal in the exciting fields of chaos theory and nonlinear science. Represented by an international editorial board comprising top researchers from a wide variety of disciplines, it is setting high standards in scientific and production quality. The journal has been reputedly acclaimed by the scientific community around the world, and has featured many important papers by leading researchers from various areas of applied sciences and engineering. The discipline of chaos theory has created a universal paradigm, a scientific parlance, and a mathematical tool for grappling with complex dynamical phenomena. In every field of applied sciences (astronomy, atmospheric sciences, biology, chemistry, economics, geophysics, life and medical sciences, physics, social sciences, ecology, etc.) and engineering (aerospace, chemical, electronic, civil, computer, information, mechanical, software, telecommunication, etc.), the local and global manifestations of chaos and bifurcation have burst forth in an unprecedented universality, linking scientists heretofore unfamiliar with one another''s fields, and offering an opportunity to reshape our grasp of reality.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信