Nonsmooth Pitchfork Bifurcations in a Quasi-Periodically Forced Piecewise-Linear Map

IF 1.9 4区 数学 Q2 MATHEMATICS, INTERDISCIPLINARY APPLICATIONS
Àngel Jorba, Joan Carles Tatjer, Yuan Zhang
{"title":"Nonsmooth Pitchfork Bifurcations in a Quasi-Periodically Forced Piecewise-Linear Map","authors":"Àngel Jorba, Joan Carles Tatjer, Yuan Zhang","doi":"10.1142/s0218127424500846","DOIUrl":null,"url":null,"abstract":"<p>We study a family of one-dimensional quasi-periodically forced maps <span><math altimg=\"eq-00001.gif\" display=\"inline\" overflow=\"scroll\"><msub><mrow><mi>F</mi></mrow><mrow><mi>a</mi><mo>,</mo><mi>b</mi></mrow></msub><mo stretchy=\"false\">(</mo><mi>x</mi><mo>,</mo><mi>𝜃</mi><mo stretchy=\"false\">)</mo><mo>=</mo><mo stretchy=\"false\">(</mo><msub><mrow><mi>f</mi></mrow><mrow><mi>a</mi><mo>,</mo><mi>b</mi></mrow></msub><mo stretchy=\"false\">(</mo><mi>x</mi><mo>,</mo><mi>𝜃</mi><mo stretchy=\"false\">)</mo><mo>,</mo><mi>𝜃</mi><mo stretchy=\"false\">+</mo><mi>ω</mi><mo stretchy=\"false\">)</mo></math></span><span></span>, where <span><math altimg=\"eq-00002.gif\" display=\"inline\" overflow=\"scroll\"><mi>x</mi></math></span><span></span> is real, <span><math altimg=\"eq-00003.gif\" display=\"inline\" overflow=\"scroll\"><mi>𝜃</mi></math></span><span></span> is an angle, and <span><math altimg=\"eq-00004.gif\" display=\"inline\" overflow=\"scroll\"><mi>ω</mi></math></span><span></span> is an irrational frequency, such that <span><math altimg=\"eq-00005.gif\" display=\"inline\" overflow=\"scroll\"><msub><mrow><mi>f</mi></mrow><mrow><mi>a</mi><mo>,</mo><mi>b</mi></mrow></msub><mo stretchy=\"false\">(</mo><mi>x</mi><mo>,</mo><mi>𝜃</mi><mo stretchy=\"false\">)</mo></math></span><span></span> is a real piecewise-linear map with respect to <span><math altimg=\"eq-00006.gif\" display=\"inline\" overflow=\"scroll\"><mi>x</mi></math></span><span></span> of certain kind. The family depends on two real parameters, <span><math altimg=\"eq-00007.gif\" display=\"inline\" overflow=\"scroll\"><mi>a</mi><mo>&gt;</mo><mn>0</mn></math></span><span></span> and <span><math altimg=\"eq-00008.gif\" display=\"inline\" overflow=\"scroll\"><mi>b</mi><mo>&gt;</mo><mn>0</mn></math></span><span></span>. For this family, we prove the existence of nonsmooth pitchfork bifurcations. For <span><math altimg=\"eq-00009.gif\" display=\"inline\" overflow=\"scroll\"><mi>a</mi><mo>&lt;</mo><mn>1</mn></math></span><span></span> and any <span><math altimg=\"eq-00010.gif\" display=\"inline\" overflow=\"scroll\"><mi>b</mi><mo>,</mo></math></span><span></span> there is only one continuous invariant curve. For <span><math altimg=\"eq-00011.gif\" display=\"inline\" overflow=\"scroll\"><mi>a</mi><mo>&gt;</mo><mn>1</mn><mo>,</mo></math></span><span></span> there exists a smooth map <span><math altimg=\"eq-00012.gif\" display=\"inline\" overflow=\"scroll\"><mi>b</mi><mo>=</mo><msub><mrow><mi>b</mi></mrow><mrow><mn>0</mn></mrow></msub><mo stretchy=\"false\">(</mo><mi>a</mi><mo stretchy=\"false\">)</mo></math></span><span></span> such that: (a) For <span><math altimg=\"eq-00013.gif\" display=\"inline\" overflow=\"scroll\"><mi>b</mi><mo>&lt;</mo><msub><mrow><mi>b</mi></mrow><mrow><mn>0</mn></mrow></msub><mo stretchy=\"false\">(</mo><mi>a</mi><mo stretchy=\"false\">)</mo></math></span><span></span>, <span><math altimg=\"eq-00014.gif\" display=\"inline\" overflow=\"scroll\"><msub><mrow><mi>f</mi></mrow><mrow><mi>a</mi><mo>,</mo><mi>b</mi></mrow></msub></math></span><span></span> has two continuous attracting invariant curves and one continuous repelling curve; (b) For <span><math altimg=\"eq-00015.gif\" display=\"inline\" overflow=\"scroll\"><mi>b</mi><mo>=</mo><msub><mrow><mi>b</mi></mrow><mrow><mn>0</mn></mrow></msub><mo stretchy=\"false\">(</mo><mi>a</mi><mo stretchy=\"false\">)</mo><mo>,</mo></math></span><span></span> it has one continuous repelling invariant curve and two semi-continuous (noncontinuous) attracting invariant curves that intersect the unstable one in a zero-Lebesgue measure set of angles; (c) For <span><math altimg=\"eq-00016.gif\" display=\"inline\" overflow=\"scroll\"><mi>b</mi><mo>&gt;</mo><msub><mrow><mi>b</mi></mrow><mrow><mn>0</mn></mrow></msub><mo stretchy=\"false\">(</mo><mi>a</mi><mo stretchy=\"false\">)</mo><mo>,</mo></math></span><span></span> it has one continuous attracting invariant curve. The case <span><math altimg=\"eq-00017.gif\" display=\"inline\" overflow=\"scroll\"><mi>a</mi><mo>=</mo><mn>1</mn></math></span><span></span> is a degenerate case that is also discussed in the paper. It is interesting to note that this family is a simplified version of the smooth family <span><math altimg=\"eq-00018.gif\" display=\"inline\" overflow=\"scroll\"><msub><mrow><mi>G</mi></mrow><mrow><mi>a</mi><mo>,</mo><mi>b</mi></mrow></msub><mo stretchy=\"false\">(</mo><mi>x</mi><mo>,</mo><mi>𝜃</mi><mo stretchy=\"false\">)</mo><mo>=</mo><mo stretchy=\"false\">(</mo><mo>arctan</mo><mo stretchy=\"false\">(</mo><mi>a</mi><mi>x</mi><mo stretchy=\"false\">)</mo><mo stretchy=\"false\">+</mo><mi>b</mi><mo>sin</mo><mo stretchy=\"false\">(</mo><mi>𝜃</mi><mo stretchy=\"false\">)</mo><mo>,</mo><mi>𝜃</mi><mo stretchy=\"false\">+</mo><mi>ω</mi><mo stretchy=\"false\">)</mo></math></span><span></span> for which there is numerical evidence of a nonsmooth pitchfork bifurcation. Finally, we also discuss the limit case when <span><math altimg=\"eq-00019.gif\" display=\"inline\" overflow=\"scroll\"><mi>a</mi><mo>→</mo><mi>∞</mi></math></span><span></span>.</p>","PeriodicalId":50337,"journal":{"name":"International Journal of Bifurcation and Chaos","volume":"23 1","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2024-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Bifurcation and Chaos","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1142/s0218127424500846","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

We study a family of one-dimensional quasi-periodically forced maps Fa,b(x,𝜃)=(fa,b(x,𝜃),𝜃+ω), where x is real, 𝜃 is an angle, and ω is an irrational frequency, such that fa,b(x,𝜃) is a real piecewise-linear map with respect to x of certain kind. The family depends on two real parameters, a>0 and b>0. For this family, we prove the existence of nonsmooth pitchfork bifurcations. For a<1 and any b, there is only one continuous invariant curve. For a>1, there exists a smooth map b=b0(a) such that: (a) For b<b0(a), fa,b has two continuous attracting invariant curves and one continuous repelling curve; (b) For b=b0(a), it has one continuous repelling invariant curve and two semi-continuous (noncontinuous) attracting invariant curves that intersect the unstable one in a zero-Lebesgue measure set of angles; (c) For b>b0(a), it has one continuous attracting invariant curve. The case a=1 is a degenerate case that is also discussed in the paper. It is interesting to note that this family is a simplified version of the smooth family Ga,b(x,𝜃)=(arctan(ax)+bsin(𝜃),𝜃+ω) for which there is numerical evidence of a nonsmooth pitchfork bifurcation. Finally, we also discuss the limit case when a.

准周期强迫分片线性图中的非光滑杈状分叉
我们研究了一维准周期强迫映射Fa,b(x,𝜃)=(fa,b(x,𝜃),𝜃+ω)族,其中x为实数,𝜃为角度,ω为无理频率,这样,fa,b(x,𝜃)是关于x的某类实数片断线性映射。这个族取决于两个实数参数:a>0 和 b>0。对于这个族,我们证明了非光滑黑叉分岔的存在性。对于 a<1 和任意 b,只有一条连续不变曲线。对于 a>1,存在一个光滑映射 b=b0(a),从而:(a) 对于 b<b0(a),fa,b 有两条连续的吸引不变曲线和一条连续的排斥曲线;(b) 对于 b=b0(a),它有一条连续的排斥不变曲线和两条半连续(非连续)的吸引不变曲线,这两条曲线与不稳定曲线相交于一个零-勒贝格度量角集;(c) 对于 b>b0(a),它有一条连续的吸引不变曲线。本文还讨论了 a=1 的退化情况。值得注意的是,这个族是光滑族 Ga,b(x,𝜃)=(arctan(ax)+bsin(𝜃),𝜃+ω)的简化版本,对于光滑族,有数值证据表明存在非光滑的叉形分岔。最后,我们还讨论了 a→∞ 时的极限情况。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
International Journal of Bifurcation and Chaos
International Journal of Bifurcation and Chaos 数学-数学跨学科应用
CiteScore
4.10
自引率
13.60%
发文量
237
审稿时长
2-4 weeks
期刊介绍: The International Journal of Bifurcation and Chaos is widely regarded as a leading journal in the exciting fields of chaos theory and nonlinear science. Represented by an international editorial board comprising top researchers from a wide variety of disciplines, it is setting high standards in scientific and production quality. The journal has been reputedly acclaimed by the scientific community around the world, and has featured many important papers by leading researchers from various areas of applied sciences and engineering. The discipline of chaos theory has created a universal paradigm, a scientific parlance, and a mathematical tool for grappling with complex dynamical phenomena. In every field of applied sciences (astronomy, atmospheric sciences, biology, chemistry, economics, geophysics, life and medical sciences, physics, social sciences, ecology, etc.) and engineering (aerospace, chemical, electronic, civil, computer, information, mechanical, software, telecommunication, etc.), the local and global manifestations of chaos and bifurcation have burst forth in an unprecedented universality, linking scientists heretofore unfamiliar with one another''s fields, and offering an opportunity to reshape our grasp of reality.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信