Ishan Bansal, Joseph Cheriyan, Logan Grout, Sharat Ibrahimpur
{"title":"Improved Approximation Algorithms by Generalizing the Primal-Dual Method Beyond Uncrossable Functions","authors":"Ishan Bansal, Joseph Cheriyan, Logan Grout, Sharat Ibrahimpur","doi":"10.1007/s00453-024-01235-2","DOIUrl":null,"url":null,"abstract":"<div><p>We address long-standing open questions raised by Williamson, Goemans, Vazirani and Mihail pertaining to the design of approximation algorithms for problems in network design via the primal-dual method (Williamson et al. in Combinatorica 15(3):435–454, 1995. https://doi.org/10.1007/BF01299747). Williamson et al. prove an approximation ratio of two for connectivity augmentation problems where the connectivity requirements can be specified by uncrossable functions. They state: “Extending our algorithm to handle non-uncrossable functions remains a challenging open problem. The key feature of uncrossable functions is that there exists an optimal dual solution which is laminar ... A larger open issue is to explore further the power of the primal-dual approach for obtaining approximation algorithms for other combinatorial optimization problems.” Our main result proves that the primal-dual algorithm of Williamson et al. achieves an approximation ratio of <span>\\(16\\)</span> for a class of functions that generalizes the notion of an uncrossable function. There exist instances that can be handled by our methods where none of the optimal dual solutions has a laminar support. We present three applications of our main result to problems in the area of network design. (1) A <span>\\(16\\)</span>-approximation algorithm for augmenting a family of small cuts of a graph <i>G</i>. The previous best approximation ratio was <span>\\(O(\\log {|V(G)|})\\)</span>. (2) A <span>\\(16\\cdot {\\lceil k/u_{min} \\rceil }\\)</span>-approximation algorithm for the Cap-<i>k</i>-ECSS problem which is as follows: Given an undirected graph <span>\\(G = (V,E)\\)</span> with edge costs <span>\\(c \\in {\\mathbb {Q}}_{\\ge 0}^E\\)</span> and edge capacities <span>\\(u \\in {\\mathbb {Z}}_{\\ge 0}^E\\)</span>, find a minimum-cost subset of the edges <span>\\(F\\subseteq E\\)</span> such that the capacity of any cut in (<i>V</i>, <i>F</i>) is at least <i>k</i>; <span>\\(u_{min}\\)</span> (respectively, <span>\\(u_{max}\\)</span>) denotes the minimum (respectively, maximum) capacity of an edge in <i>E</i>, and w.l.o.g. <span>\\(u_{max} \\le k\\)</span>. The previous best approximation ratio was <span>\\(\\min (O(\\log {|V|}), k, 2u_{max})\\)</span>. (3) A <span>\\(20\\)</span>-approximation algorithm for the model of (<i>p</i>, 2)-Flexible Graph Connectivity. The previous best approximation ratio was <span>\\(O(\\log {|V(G)|})\\)</span>, where <i>G</i> denotes the input graph.\n</p></div>","PeriodicalId":50824,"journal":{"name":"Algorithmica","volume":"86 8","pages":"2575 - 2604"},"PeriodicalIF":0.9000,"publicationDate":"2024-05-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Algorithmica","FirstCategoryId":"94","ListUrlMain":"https://link.springer.com/article/10.1007/s00453-024-01235-2","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, SOFTWARE ENGINEERING","Score":null,"Total":0}
引用次数: 0
Abstract
We address long-standing open questions raised by Williamson, Goemans, Vazirani and Mihail pertaining to the design of approximation algorithms for problems in network design via the primal-dual method (Williamson et al. in Combinatorica 15(3):435–454, 1995. https://doi.org/10.1007/BF01299747). Williamson et al. prove an approximation ratio of two for connectivity augmentation problems where the connectivity requirements can be specified by uncrossable functions. They state: “Extending our algorithm to handle non-uncrossable functions remains a challenging open problem. The key feature of uncrossable functions is that there exists an optimal dual solution which is laminar ... A larger open issue is to explore further the power of the primal-dual approach for obtaining approximation algorithms for other combinatorial optimization problems.” Our main result proves that the primal-dual algorithm of Williamson et al. achieves an approximation ratio of \(16\) for a class of functions that generalizes the notion of an uncrossable function. There exist instances that can be handled by our methods where none of the optimal dual solutions has a laminar support. We present three applications of our main result to problems in the area of network design. (1) A \(16\)-approximation algorithm for augmenting a family of small cuts of a graph G. The previous best approximation ratio was \(O(\log {|V(G)|})\). (2) A \(16\cdot {\lceil k/u_{min} \rceil }\)-approximation algorithm for the Cap-k-ECSS problem which is as follows: Given an undirected graph \(G = (V,E)\) with edge costs \(c \in {\mathbb {Q}}_{\ge 0}^E\) and edge capacities \(u \in {\mathbb {Z}}_{\ge 0}^E\), find a minimum-cost subset of the edges \(F\subseteq E\) such that the capacity of any cut in (V, F) is at least k; \(u_{min}\) (respectively, \(u_{max}\)) denotes the minimum (respectively, maximum) capacity of an edge in E, and w.l.o.g. \(u_{max} \le k\). The previous best approximation ratio was \(\min (O(\log {|V|}), k, 2u_{max})\). (3) A \(20\)-approximation algorithm for the model of (p, 2)-Flexible Graph Connectivity. The previous best approximation ratio was \(O(\log {|V(G)|})\), where G denotes the input graph.
期刊介绍:
Algorithmica is an international journal which publishes theoretical papers on algorithms that address problems arising in practical areas, and experimental papers of general appeal for practical importance or techniques. The development of algorithms is an integral part of computer science. The increasing complexity and scope of computer applications makes the design of efficient algorithms essential.
Algorithmica covers algorithms in applied areas such as: VLSI, distributed computing, parallel processing, automated design, robotics, graphics, data base design, software tools, as well as algorithms in fundamental areas such as sorting, searching, data structures, computational geometry, and linear programming.
In addition, the journal features two special sections: Application Experience, presenting findings obtained from applications of theoretical results to practical situations, and Problems, offering short papers presenting problems on selected topics of computer science.