A non-classical parameterization for density estimation using sample moments

IF 1.2 3区 数学 Q2 STATISTICS & PROBABILITY
Guangyu Wu, Anders Lindquist
{"title":"A non-classical parameterization for density estimation using sample moments","authors":"Guangyu Wu, Anders Lindquist","doi":"10.1007/s00362-024-01563-z","DOIUrl":null,"url":null,"abstract":"<p>Probability density estimation is a core problem in statistics and data science. Moment methods are an important means of density estimation, but they are generally strongly dependent on the choice of feasible functions, which severely affects the performance. In this paper, we propose a non-classical parametrization for density estimation using sample moments, which does not require the choice of such functions. The parametrization is induced by the squared Hellinger distance, and the solution minimizing it, which is proved to exist and be unique subject to a simple prior that does not depend on data, and which can be obtained by convex optimization. Statistical properties of the density estimator, together with an asymptotic error upper bound, are proposed for the estimator by power moments. Simulation results validate the performance of the estimator by a comparison to several prevailing methods. The convergence rate of the proposed estimator is proved to be <span>\\(m^{-1/2}\\)</span> (<i>m</i> being the number of data samples), which is the optimal convergence rate for parametric estimators and exceeds that of the nonparametric estimators. To the best of our knowledge, the proposed estimator is the first one in the literature for which the power moments up to an arbitrary even order exactly match the sample moments, while the true density is not assumed to fall within specific function classes.</p>","PeriodicalId":51166,"journal":{"name":"Statistical Papers","volume":"57 1","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2024-05-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Statistical Papers","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00362-024-01563-z","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 0

Abstract

Probability density estimation is a core problem in statistics and data science. Moment methods are an important means of density estimation, but they are generally strongly dependent on the choice of feasible functions, which severely affects the performance. In this paper, we propose a non-classical parametrization for density estimation using sample moments, which does not require the choice of such functions. The parametrization is induced by the squared Hellinger distance, and the solution minimizing it, which is proved to exist and be unique subject to a simple prior that does not depend on data, and which can be obtained by convex optimization. Statistical properties of the density estimator, together with an asymptotic error upper bound, are proposed for the estimator by power moments. Simulation results validate the performance of the estimator by a comparison to several prevailing methods. The convergence rate of the proposed estimator is proved to be \(m^{-1/2}\) (m being the number of data samples), which is the optimal convergence rate for parametric estimators and exceeds that of the nonparametric estimators. To the best of our knowledge, the proposed estimator is the first one in the literature for which the power moments up to an arbitrary even order exactly match the sample moments, while the true density is not assumed to fall within specific function classes.

Abstract Image

利用样本矩进行密度估计的非经典参数化方法
概率密度估计是统计学和数据科学的核心问题。矩方法是密度估计的一种重要手段,但它通常严重依赖于可行函数的选择,这严重影响了其性能。在本文中,我们提出了一种利用样本矩进行密度估计的非经典参数化方法,它不需要选择此类函数。参数化由平方海灵格距离和最小化海灵格距离的解诱导,该解被证明是存在的,并且在不依赖于数据的简单先验条件下是唯一的,可以通过凸优化获得。针对幂矩估计法,提出了密度估计法的统计特性以及渐近误差上限。通过与几种常用方法的比较,仿真结果验证了估计器的性能。事实证明,所提估计器的收敛速率为(m^{-1/2}\)(m 为数据样本数),这是参数估计器的最佳收敛速率,并且超过了非参数估计器的收敛速率。据我们所知,所提出的估计器是文献中第一个幂矩直到任意偶数阶都与样本矩完全匹配的估计器,而真实密度并不假定属于特定的函数类别。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Statistical Papers
Statistical Papers 数学-统计学与概率论
CiteScore
2.80
自引率
7.70%
发文量
95
审稿时长
6-12 weeks
期刊介绍: The journal Statistical Papers addresses itself to all persons and organizations that have to deal with statistical methods in their own field of work. It attempts to provide a forum for the presentation and critical assessment of statistical methods, in particular for the discussion of their methodological foundations as well as their potential applications. Methods that have broad applications will be preferred. However, special attention is given to those statistical methods which are relevant to the economic and social sciences. In addition to original research papers, readers will find survey articles, short notes, reports on statistical software, problem section, and book reviews.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信