Arithmetic Varieties of Numerical Semigroups

IF 1.1 3区 数学 Q1 MATHEMATICS
Manuel B. Branco, Ignacio Ojeda, José Carlos Rosales
{"title":"Arithmetic Varieties of Numerical Semigroups","authors":"Manuel B. Branco, Ignacio Ojeda, José Carlos Rosales","doi":"10.1007/s00025-024-02212-5","DOIUrl":null,"url":null,"abstract":"<p>In this paper we present the notion of arithmetic variety for numerical semigroups. We study various aspects related to these varieties such as the smallest arithmetic that contains a set of numerical semigroups and we exhibit the rooted tree associated with an arithmetic variety. This tree is not locally finite; however, if the Frobenius number is fixed, the tree has finitely many nodes and algorithms can be developed. All algorithms provided in this article include their (non-debugged) implementation in GAP.</p>","PeriodicalId":54490,"journal":{"name":"Results in Mathematics","volume":null,"pages":null},"PeriodicalIF":1.1000,"publicationDate":"2024-05-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Results in Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00025-024-02212-5","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper we present the notion of arithmetic variety for numerical semigroups. We study various aspects related to these varieties such as the smallest arithmetic that contains a set of numerical semigroups and we exhibit the rooted tree associated with an arithmetic variety. This tree is not locally finite; however, if the Frobenius number is fixed, the tree has finitely many nodes and algorithms can be developed. All algorithms provided in this article include their (non-debugged) implementation in GAP.

Abstract Image

数字半群的算术变种
在本文中,我们提出了数字半群的算术变种概念。我们研究了与这些种类相关的各个方面,例如包含一组数字半群的最小算术,并展示了与算术种类相关的有根树。这棵树不是局部有限的;但是,如果弗罗贝尼斯数是固定的,这棵树就有有限多个节点,就可以开发出算法。本文提供的所有算法都包括在 GAP 中的实现(未调试)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Results in Mathematics
Results in Mathematics 数学-数学
CiteScore
1.90
自引率
4.50%
发文量
198
审稿时长
6-12 weeks
期刊介绍: Results in Mathematics (RM) publishes mainly research papers in all fields of pure and applied mathematics. In addition, it publishes summaries of any mathematical field and surveys of any mathematical subject provided they are designed to advance some recent mathematical development.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信