Symbolic Studies of Maxwell’s Equations in Space-Time Algebra Formalism

IF 0.7 4区 计算机科学 Q4 COMPUTER SCIENCE, SOFTWARE ENGINEERING
A. V. Korol’kova, M. N. Gevorkyan, A. V. Fedorov, K. A. Shtepa, D. S. Kulyabov
{"title":"Symbolic Studies of Maxwell’s Equations in Space-Time Algebra Formalism","authors":"A. V. Korol’kova, M. N. Gevorkyan, A. V. Fedorov, K. A. Shtepa, D. S. Kulyabov","doi":"10.1134/s0361768824020087","DOIUrl":null,"url":null,"abstract":"<h3 data-test=\"abstract-sub-heading\">Abstract</h3><p>Different implementations of Clifford algebra: spinors, quaternions, and geometric algebra, are used to describe physical and technical systems. The geometric algebra formalism is a relatively new approach, destined to be used primarily by engineers and applied researchers. In a number of works, the authors examined the implementation of the geometric algebra formalism for computer algebra systems. In this article, the authors extend elliptic geometric algebra to hyperbolic space-time algebra. The results are illustrated by different representations of Maxwell’s equations. Using a computer algebra system, Maxwell’s vacuum equations in the space-time algebra representation are converted to Maxwell’s equations in vector formalism. In addition to practical application, the authors would like to draw attention to the didactic significance of these studies.</p>","PeriodicalId":54555,"journal":{"name":"Programming and Computer Software","volume":null,"pages":null},"PeriodicalIF":0.7000,"publicationDate":"2024-05-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Programming and Computer Software","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1134/s0361768824020087","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, SOFTWARE ENGINEERING","Score":null,"Total":0}
引用次数: 0

Abstract

Different implementations of Clifford algebra: spinors, quaternions, and geometric algebra, are used to describe physical and technical systems. The geometric algebra formalism is a relatively new approach, destined to be used primarily by engineers and applied researchers. In a number of works, the authors examined the implementation of the geometric algebra formalism for computer algebra systems. In this article, the authors extend elliptic geometric algebra to hyperbolic space-time algebra. The results are illustrated by different representations of Maxwell’s equations. Using a computer algebra system, Maxwell’s vacuum equations in the space-time algebra representation are converted to Maxwell’s equations in vector formalism. In addition to practical application, the authors would like to draw attention to the didactic significance of these studies.

时空代数形式主义下麦克斯韦方程的符号研究
摘要克利福德代数的不同实现:旋量、四元数和几何代数,被用来描述物理和技术系统。几何代数形式是一种相对较新的方法,主要用于工程师和应用研究人员。在一些著作中,作者研究了几何代数形式主义在计算机代数系统中的应用。在本文中,作者将椭圆几何代数扩展到双曲时空代数。结果通过麦克斯韦方程组的不同表示法加以说明。利用计算机代数系统,将时空代数表示法中的麦克斯韦真空方程转换为向量形式主义中的麦克斯韦方程。除了实际应用之外,作者还希望提请注意这些研究的教学意义。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Programming and Computer Software
Programming and Computer Software 工程技术-计算机:软件工程
CiteScore
1.60
自引率
28.60%
发文量
35
审稿时长
>12 weeks
期刊介绍: Programming and Computer Software is a peer reviewed journal devoted to problems in all areas of computer science: operating systems, compiler technology, software engineering, artificial intelligence, etc.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信