Realization of Permutation Modules via Alexandroff Spaces

IF 1.1 3区 数学 Q1 MATHEMATICS
Cristina Costoya, Rafael Gomes, Antonio Viruel
{"title":"Realization of Permutation Modules via Alexandroff Spaces","authors":"Cristina Costoya, Rafael Gomes, Antonio Viruel","doi":"10.1007/s00025-024-02199-z","DOIUrl":null,"url":null,"abstract":"<p>We raise the question of the realizability of permutation modules in the context of Kahn’s realizability problem for abstract groups and the <i>G</i>-Moore space problem. Specifically, given a finite group <i>G</i>, we consider a collection <span>\\(\\{M_i\\}_{i=1}^n\\)</span> of finitely generated <span>\\(\\mathbb {Z}G\\)</span>-modules that admit a submodule decomposition on which <i>G</i> acts by permuting the summands. Then we prove the existence of connected finite spaces <i>X</i> that realize each <span>\\(M_i\\)</span> as its <i>i</i>-th homology, <i>G</i> as its group of self-homotopy equivalences <span>\\(\\mathcal {E}(X)\\)</span>, and the action of <i>G</i> on each <span>\\(M_i\\)</span> as the action of <span>\\(\\mathcal {E}(X)\\)</span> on <span>\\(H_i(X; \\mathbb {Z})\\)</span>.</p>","PeriodicalId":54490,"journal":{"name":"Results in Mathematics","volume":null,"pages":null},"PeriodicalIF":1.1000,"publicationDate":"2024-05-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Results in Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00025-024-02199-z","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

We raise the question of the realizability of permutation modules in the context of Kahn’s realizability problem for abstract groups and the G-Moore space problem. Specifically, given a finite group G, we consider a collection \(\{M_i\}_{i=1}^n\) of finitely generated \(\mathbb {Z}G\)-modules that admit a submodule decomposition on which G acts by permuting the summands. Then we prove the existence of connected finite spaces X that realize each \(M_i\) as its i-th homology, G as its group of self-homotopy equivalences \(\mathcal {E}(X)\), and the action of G on each \(M_i\) as the action of \(\mathcal {E}(X)\) on \(H_i(X; \mathbb {Z})\).

Abstract Image

通过亚历山德罗夫空间实现置换模块
我们在卡恩的抽象群可实现性问题和 G-Moore 空间问题的背景下提出了置换模块的可实现性问题。具体地说,给定一个有限群 G,我们考虑有限生成的 \(\mathbb {Z}G\)- 模块的集合 \(\{M_i\}_{i=1}^n\),这些模块允许一个子模块分解,G 通过置换求和作用于这些子模块。然后我们证明了连通有限空间 X 的存在,这些空间实现了每个 \(M_i\) 作为它的第 i 个同调,G 作为它的自同调等价群 \(\mathcal {E}(X)\) ,以及 G 对每个 \(M_i\) 的作用作为 \(\mathcal {E}(X)\) 对 \(H_i(X; \mathbb {Z})\) 的作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Results in Mathematics
Results in Mathematics 数学-数学
CiteScore
1.90
自引率
4.50%
发文量
198
审稿时长
6-12 weeks
期刊介绍: Results in Mathematics (RM) publishes mainly research papers in all fields of pure and applied mathematics. In addition, it publishes summaries of any mathematical field and surveys of any mathematical subject provided they are designed to advance some recent mathematical development.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信