Angular structure of Reuleaux cones

IF 0.9 3区 数学 Q2 MATHEMATICS
José Pedro Moreno, Alberto Seeger
{"title":"Angular structure of Reuleaux cones","authors":"José Pedro Moreno, Alberto Seeger","doi":"10.1007/s00010-024-01063-3","DOIUrl":null,"url":null,"abstract":"<p>In this note we exhibit some examples of proper cones that have the property of being of constant opening angle. In particular, we analyze the class of Reuleaux cones in <span>\\(\\mathbb {R}^n\\)</span> with <span>\\(n\\ge 3\\)</span>. Such cones are constructed as intersection of <i>n</i> revolutions cones <span>\\(\\textrm{Rev}(g_1,\\psi ),\\ldots , \\textrm{Rev}(g_n,\\psi )\\)</span> whose incenters <span>\\(g_1,\\ldots , g_n\\)</span> are unit vectors forming a common angle. The half-aperture angle <span>\\(\\psi \\)</span> of each revolution cone corresponds to the common angle between the incenters. A major result of this work is that a Reuleaux cone in <span>\\(\\mathbb {R}^n\\)</span> is of constant opening angle if and only if <span>\\(n= 3\\)</span>. Reuleaux cones in dimension higher than 3 are not of constant opening angle, but such mathematical objects are still of interest. In the same way that a Reuleaux triangle is a “rounded” version of an equilateral triangle, a Reuleaux cone can be viewed as a rounded version of an equiangular simplicial cone and, therefore, it has a lot of symmetry in it.</p>","PeriodicalId":55611,"journal":{"name":"Aequationes Mathematicae","volume":null,"pages":null},"PeriodicalIF":0.9000,"publicationDate":"2024-05-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Aequationes Mathematicae","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00010-024-01063-3","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

In this note we exhibit some examples of proper cones that have the property of being of constant opening angle. In particular, we analyze the class of Reuleaux cones in \(\mathbb {R}^n\) with \(n\ge 3\). Such cones are constructed as intersection of n revolutions cones \(\textrm{Rev}(g_1,\psi ),\ldots , \textrm{Rev}(g_n,\psi )\) whose incenters \(g_1,\ldots , g_n\) are unit vectors forming a common angle. The half-aperture angle \(\psi \) of each revolution cone corresponds to the common angle between the incenters. A major result of this work is that a Reuleaux cone in \(\mathbb {R}^n\) is of constant opening angle if and only if \(n= 3\). Reuleaux cones in dimension higher than 3 are not of constant opening angle, but such mathematical objects are still of interest. In the same way that a Reuleaux triangle is a “rounded” version of an equilateral triangle, a Reuleaux cone can be viewed as a rounded version of an equiangular simplicial cone and, therefore, it has a lot of symmetry in it.

鲁莱欧锥的角度结构
在本论文中,我们举例说明了一些具有恒定开角性质的正圆锥。特别是,我们分析了 \(\mathbb {R}^n\) 与 \(n\ge 3\) 中的 Reuleaux 锥。这样的圆锥是由n个旋转圆锥的交点(\textrm{Rev}(g_1,\psi ),\ldots , \textrm{Rev}(g_n,\psi))构成的,它们的切点(g_1,\ldots , g_n\ )都是单位向量,形成了一个共同的角度。每个圆锥体的半孔径角((\psi\))对应于入射角之间的公共角。这项工作的一个主要成果是,当且仅当 \(n= 3\) 时,\(\mathbb {R}^n\) 中的鲁莱欧斯锥的开口角是恒定的。维数大于 3 的鲁莱欧锥不是恒定开角的,但这样的数学对象仍然令人感兴趣。就像 Reuleaux 三角形是等边三角形的 "圆角 "版本一样,Reuleaux 圆锥也可以看作是等边简锥的圆角版本,因此它有很多对称性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Aequationes Mathematicae
Aequationes Mathematicae MATHEMATICS, APPLIED-MATHEMATICS
CiteScore
1.70
自引率
12.50%
发文量
62
审稿时长
>12 weeks
期刊介绍: aequationes mathematicae is an international journal of pure and applied mathematics, which emphasizes functional equations, dynamical systems, iteration theory, combinatorics, and geometry. The journal publishes research papers, reports of meetings, and bibliographies. High quality survey articles are an especially welcome feature. In addition, summaries of recent developments and research in the field are published rapidly.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信