On a Generalization of Symmetric Edge Polytopes to Regular Matroids

Pub Date : 2024-05-22 DOI:10.1093/imrn/rnae107
Alessio D’Alì, Martina Juhnke-Kubitzke, Melissa Koch
{"title":"On a Generalization of Symmetric Edge Polytopes to Regular Matroids","authors":"Alessio D’Alì, Martina Juhnke-Kubitzke, Melissa Koch","doi":"10.1093/imrn/rnae107","DOIUrl":null,"url":null,"abstract":"Starting from any finite simple graph, one can build a reflexive polytope known as a symmetric edge polytope. The first goal of this paper is to show that symmetric edge polytopes are intrinsically matroidal objects: more precisely, we prove that two symmetric edge polytopes are unimodularly equivalent precisely when they share the same graphical matroid. The second goal is to show that one can construct a generalized symmetric edge polytope starting from every regular matroid. Just like in the usual case, we are able to find combinatorial ways to describe the facets and an explicit regular unimodular triangulation of any such polytope. Finally, we show that the Ehrhart theory of the polar of a given generalized symmetric edge polytope is tightly linked to the structure of the lattice of flows of the dual regular matroid.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-05-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1093/imrn/rnae107","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Starting from any finite simple graph, one can build a reflexive polytope known as a symmetric edge polytope. The first goal of this paper is to show that symmetric edge polytopes are intrinsically matroidal objects: more precisely, we prove that two symmetric edge polytopes are unimodularly equivalent precisely when they share the same graphical matroid. The second goal is to show that one can construct a generalized symmetric edge polytope starting from every regular matroid. Just like in the usual case, we are able to find combinatorial ways to describe the facets and an explicit regular unimodular triangulation of any such polytope. Finally, we show that the Ehrhart theory of the polar of a given generalized symmetric edge polytope is tightly linked to the structure of the lattice of flows of the dual regular matroid.
分享
查看原文
论对称边多边形对正则表达式的泛化
从任何有限简单图开始,我们都可以建立一个称为对称边多胞图的反射多胞图。本文的第一个目标是证明对称边多胞形本质上是矩阵对象:更准确地说,我们证明了两个对称边多胞形在共享相同图形矩阵时是单模态等价的。第二个目标是证明人们可以从每个规则 matroid 开始构建广义对称边多胞形。就像在通常情况下一样,我们能够找到组合方法来描述任何此类多面体的切面和明确的正则单模态三角剖分。最后,我们证明了给定广义对称边多胞形的极点艾尔哈特理论与对偶正则 matroid 的流晶格结构密切相关。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信