The Dimension of the Set of $\psi $-Badly Approximable Points in All Ambient Dimensions: On a Question of Beresnevich and Velani

Pub Date : 2024-05-22 DOI:10.1093/imrn/rnae101
Henna Koivusalo, Jason Levesley, Benjamin Ward, Xintian Zhang
{"title":"The Dimension of the Set of $\\psi $-Badly Approximable Points in All Ambient Dimensions: On a Question of Beresnevich and Velani","authors":"Henna Koivusalo, Jason Levesley, Benjamin Ward, Xintian Zhang","doi":"10.1093/imrn/rnae101","DOIUrl":null,"url":null,"abstract":"Let $\\psi :{\\mathbb{N}} \\to [0,\\infty )$, $\\psi (q)=q^{-(1+\\tau )}$ and let $\\psi $-badly approximable points be those vectors in ${\\mathbb{R}}^{d}$ that are $\\psi $-well approximable, but not $c\\psi $-well approximable for arbitrarily small constants $c>0$. We establish that the $\\psi $-badly approximable points have the Hausdorff dimension of the $\\psi $-well approximable points, the dimension taking the value $(d+1)/(\\tau +1)$ familiar from theorems of Besicovitch and Jarník. The method of proof is an entirely new take on the Mass Transference Principle (MTP) by Beresnevich and Velani (Annals, 2006); namely, we use the colloquially named “delayed pruning” to construct a sufficiently large $\\liminf $ set and combine this with ideas inspired by the proof of the MTP to find a large $\\limsup $ subset of the $\\liminf $ set. Our results are a generalisation of some $1$-dimensional results due to Bugeaud and Moreira (Acta Arith, 2011), but our method of proof is nothing alike.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-05-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1093/imrn/rnae101","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Let $\psi :{\mathbb{N}} \to [0,\infty )$, $\psi (q)=q^{-(1+\tau )}$ and let $\psi $-badly approximable points be those vectors in ${\mathbb{R}}^{d}$ that are $\psi $-well approximable, but not $c\psi $-well approximable for arbitrarily small constants $c>0$. We establish that the $\psi $-badly approximable points have the Hausdorff dimension of the $\psi $-well approximable points, the dimension taking the value $(d+1)/(\tau +1)$ familiar from theorems of Besicovitch and Jarník. The method of proof is an entirely new take on the Mass Transference Principle (MTP) by Beresnevich and Velani (Annals, 2006); namely, we use the colloquially named “delayed pruning” to construct a sufficiently large $\liminf $ set and combine this with ideas inspired by the proof of the MTP to find a large $\limsup $ subset of the $\liminf $ set. Our results are a generalisation of some $1$-dimensional results due to Bugeaud and Moreira (Acta Arith, 2011), but our method of proof is nothing alike.
分享
查看原文
在所有环境维度中$\psi$坏近似点集合的维度:关于别列斯涅维奇和维拉尼的一个问题
让 $\psi :{\mathbb{N}} 去 [0,\infty )$。\到 [0,\infty )$,$\psi (q)=q^{-(1+\tau )}$,并让 $\psi $坏近似点是${mathbb{R}}^{d}$中那些对于任意小的常数$c>0$来说$\psi $好近似,但不是$c\psi $好近似的向量。我们确定,$\psi$-badly approximable点具有$\psi$-well approximable点的豪斯多夫维度,维度取值为贝西科维奇(Besicovitch)和雅尼克(Jarník)定理中熟悉的$(d+1)/(\tau +1)$。我们的证明方法是对贝尔斯涅维奇和维拉尼的质量转移原理(MTP)(《年鉴》,2006年)的全新演绎;即,我们使用俗称的 "延迟剪枝 "来构造一个足够大的(\liminf)集合,并将其与受MTP证明启发的思想相结合,从而找到(\liminf)集合的一个大的(\limsup)子集。我们的结果是对布格奥德和莫雷拉(Acta Arith, 2011)提出的一些1$维结果的概括,但我们的证明方法却完全不同。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信