Multi-bump Solutions for a Strongly Degenerate Problem with Exponential Growth in $$\mathbb {R}^N$$

Jefferson Abrantes dos Santos, Giovany M. Figueiredo, Uberlandio B. Severo
{"title":"Multi-bump Solutions for a Strongly Degenerate Problem with Exponential Growth in $$\\mathbb {R}^N$$","authors":"Jefferson Abrantes dos Santos, Giovany M. Figueiredo, Uberlandio B. Severo","doi":"10.1007/s12220-024-01687-6","DOIUrl":null,"url":null,"abstract":"<p>In this paper, we study a class of strongly degenerate problems with critical exponential growth in <span>\\(\\mathbb {R}^N\\)</span>, <span>\\(N\\ge 2\\)</span>. We do not assume ellipticity condition on the operator and thus the maximum principle given by Lieberman (Commun Partial Differ Equ 16:311–361, 1991) can not be accessed. Therefore, a careful and delicate analysis is necessary and some ideas can not be applied in our scenario. The arguments developed in this paper are variational and our main result completes the study made in the current literature about the subject. Moreover, when <span>\\(N=2\\)</span> or <span>\\(N=3\\)</span> the solutions model the slow steady-state flow of a fluid of Prandtl-Eyring type.</p>","PeriodicalId":501200,"journal":{"name":"The Journal of Geometric Analysis","volume":"30 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-05-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Journal of Geometric Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s12220-024-01687-6","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we study a class of strongly degenerate problems with critical exponential growth in \(\mathbb {R}^N\), \(N\ge 2\). We do not assume ellipticity condition on the operator and thus the maximum principle given by Lieberman (Commun Partial Differ Equ 16:311–361, 1991) can not be accessed. Therefore, a careful and delicate analysis is necessary and some ideas can not be applied in our scenario. The arguments developed in this paper are variational and our main result completes the study made in the current literature about the subject. Moreover, when \(N=2\) or \(N=3\) the solutions model the slow steady-state flow of a fluid of Prandtl-Eyring type.

Abstract Image

在 $$\mathbb {R}^N$ 中指数增长的强退化问题的多凸点解决方案
在本文中,我们研究了一类在 \(\mathbb {R}^N\), \(N\ge 2\) 中具有临界指数增长的强退化问题。我们没有假设算子的椭圆性条件,因此无法使用利伯曼(Commun Partial Differ Equ 16:311-361,1991)给出的最大原则。因此,有必要进行细致入微的分析,而且有些观点无法应用于我们的方案。本文提出的论点是变分的,我们的主要结果完善了当前文献中关于该主题的研究。此外,当 \(N=2\) 或 \(N=3\) 时,求解模拟了普朗特-艾林型流体的慢速稳态流动。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信