Global Dynamics of 3D Compressible Viscous and Heat-Conducting Micropolar Fluids with Vacuum at Infinity

Siqi Liu, Yang Liu, Nan Zhou
{"title":"Global Dynamics of 3D Compressible Viscous and Heat-Conducting Micropolar Fluids with Vacuum at Infinity","authors":"Siqi Liu, Yang Liu, Nan Zhou","doi":"10.1007/s12220-024-01688-5","DOIUrl":null,"url":null,"abstract":"<p>In this paper, we are concerned with the Cauchy problem of 3D viscous and heat-conducting micropolar fluids with far field vacuum. Compared with the case of non-vacuum at infinity (Huang and Li in Arch Ration Mech Anal 227:995–1059, 2018; Huang et al. in J Math Fluid Mech 23(1):50, 2021), due to <span>\\((\\rho (t, x), \\theta (t, x))\\rightarrow (0, 0)\\)</span> as <span>\\(|x|\\rightarrow \\infty \\)</span>, we don’t have useful energy equality (or inequality), which is very important to establish a priori estimates in Huang and Li (Arch Ration Mech Anal 227:995–1059, 2018) and Huang et al. (J Math Fluid Mech 23(1):50, 2021). Thus, a new assumption of a priori estimates and more complicated calculations will be needed. On the other hand, we need to deal with some strong nonlinear terms which come from the interactions of velocity and micro-rotation velocity. Finally, we show that the global existence and uniqueness of strong solutions provided that the initial energy is suitably small. In particular, large-time behavior and a exponential decay rate of the strong solution are obtained, which generalizes the incompressible case (Ye in Dicret Contin Dyn Syst Ser B 24:6725–6743, 2019) to the full compressible case.</p>","PeriodicalId":501200,"journal":{"name":"The Journal of Geometric Analysis","volume":"46 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-05-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Journal of Geometric Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s12220-024-01688-5","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we are concerned with the Cauchy problem of 3D viscous and heat-conducting micropolar fluids with far field vacuum. Compared with the case of non-vacuum at infinity (Huang and Li in Arch Ration Mech Anal 227:995–1059, 2018; Huang et al. in J Math Fluid Mech 23(1):50, 2021), due to \((\rho (t, x), \theta (t, x))\rightarrow (0, 0)\) as \(|x|\rightarrow \infty \), we don’t have useful energy equality (or inequality), which is very important to establish a priori estimates in Huang and Li (Arch Ration Mech Anal 227:995–1059, 2018) and Huang et al. (J Math Fluid Mech 23(1):50, 2021). Thus, a new assumption of a priori estimates and more complicated calculations will be needed. On the other hand, we need to deal with some strong nonlinear terms which come from the interactions of velocity and micro-rotation velocity. Finally, we show that the global existence and uniqueness of strong solutions provided that the initial energy is suitably small. In particular, large-time behavior and a exponential decay rate of the strong solution are obtained, which generalizes the incompressible case (Ye in Dicret Contin Dyn Syst Ser B 24:6725–6743, 2019) to the full compressible case.

无限真空条件下三维可压缩粘性和导热微极性流体的全局动力学
本文关注三维粘性导热微极流体的远场真空 Cauchy 问题。与无穷远处非真空的情况相比(Huang and Li in Arch Ration Mech Anal 227:995-1059, 2018; Huang et al.in J Math Fluid Mech 23(1):50, 2021),由于\((\rho (t, x), \theta (t, x))\rightarrow (0, 0)\)为\(|x|\rightarrow \infty \),我们没有有用的能量相等(或不等式),这对于在 Huang and Li (Arch Ration Mech Anal 227:995-1059, 2018) 和 Huang et al.(J Math Fluid Mech 23(1):50, 2021)中建立先验估计非常重要。因此,需要一个新的先验估计假设和更复杂的计算。另一方面,我们需要处理一些强非线性项,它们来自速度与微旋转速度的相互作用。最后,我们证明了只要初始能量适当小,强解的全局存在性和唯一性。特别是,我们得到了强解的大时间行为和指数衰减率,这将不可压缩情况(Ye in Dicret Contin Dyn Syst Ser B 24:6725-6743, 2019)推广到了完全可压缩情况。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信