Sugammadex Potentiation of Morphine Analgesia and Reduction of Opioid Tolerance Is Accompanied by Inhibition of Oxidative Stress and the NLRP3/IL-1β Signaling Pathway in the Rat Dorsal Root Ganglion
{"title":"Sugammadex Potentiation of Morphine Analgesia and Reduction of Opioid Tolerance Is Accompanied by Inhibition of Oxidative Stress and the NLRP3/IL-1β Signaling Pathway in the Rat Dorsal Root Ganglion","authors":"Ahmet Sevki Taskiran, Onur Avci","doi":"10.1134/s1819712424010227","DOIUrl":null,"url":null,"abstract":"<h3 data-test=\"abstract-sub-heading\">Abstract</h3><p>Recent studies have shown that sugammadex’s effects on the nervous system are controversial and its effect on nociception, morphine analgesia and tolerance is still unclear. The current study aimed to examine the possible involvement of sugammadex on nociception, morphine analgesia, and morphine tolerance development involving oxidative stress and NOD-like receptor protein 3 (NLRP3)/Interleukin-1β (IL-1β) signaling pathways in rats. The animals, thirty-six male Wistar Albino rats, were separated into six groups (<i>n</i> = 6 for each group): saline, sugammadex, morphine, morphine + sugammadex, morphine tolerance, and morphine tolerance + sugammadex. The analgesic effects were measured by analgesia tests (the tail-flick and hot plate). Oxidative stress parameters, NLRP3/IL-1β signaling pathway, and apoptotic proteins in the dorsal root ganglion (DRG) tissues were measured using Enzyme-Linked ImmunoSorbent Assay (ELISA) kits. Sugammadex had no antinociceptive activity when administered alone. However, it improved morphine’s analgesic efficacy and inhibited the development of morphine tolerance. In addition, it decreased oxidative stress and NLRP3/IL-1β signaling pathway proteins in the DRG when administered with single and repeated doses of morphine. Besides, sugammadex lowered apoptotic proteins in the DRG following tolerance development. Thus, we may conclude that the ability of sugammadex to affect morphine pharmacological activity may be mediated by the suppression of oxidative stress and the NLRP3/IL-1β pathway.</p>","PeriodicalId":19119,"journal":{"name":"Neurochemical Journal","volume":"78 1","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2024-05-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neurochemical Journal","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1134/s1819712424010227","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Recent studies have shown that sugammadex’s effects on the nervous system are controversial and its effect on nociception, morphine analgesia and tolerance is still unclear. The current study aimed to examine the possible involvement of sugammadex on nociception, morphine analgesia, and morphine tolerance development involving oxidative stress and NOD-like receptor protein 3 (NLRP3)/Interleukin-1β (IL-1β) signaling pathways in rats. The animals, thirty-six male Wistar Albino rats, were separated into six groups (n = 6 for each group): saline, sugammadex, morphine, morphine + sugammadex, morphine tolerance, and morphine tolerance + sugammadex. The analgesic effects were measured by analgesia tests (the tail-flick and hot plate). Oxidative stress parameters, NLRP3/IL-1β signaling pathway, and apoptotic proteins in the dorsal root ganglion (DRG) tissues were measured using Enzyme-Linked ImmunoSorbent Assay (ELISA) kits. Sugammadex had no antinociceptive activity when administered alone. However, it improved morphine’s analgesic efficacy and inhibited the development of morphine tolerance. In addition, it decreased oxidative stress and NLRP3/IL-1β signaling pathway proteins in the DRG when administered with single and repeated doses of morphine. Besides, sugammadex lowered apoptotic proteins in the DRG following tolerance development. Thus, we may conclude that the ability of sugammadex to affect morphine pharmacological activity may be mediated by the suppression of oxidative stress and the NLRP3/IL-1β pathway.
期刊介绍:
Neurochemical Journal (Neirokhimiya) provides a source for the communication of the latest findings in all areas of contemporary neurochemistry and other fields of relevance (including molecular biology, biochemistry, physiology, neuroimmunology, pharmacology) in an afford to expand our understanding of the functions of the nervous system. The journal presents papers on functional neurochemistry, nervous system receptors, neurotransmitters, myelin, chromaffin granules and other components of the nervous system, as well as neurophysiological and clinical aspects, behavioral reactions, etc. Relevant topics include structure and function of the nervous system proteins, neuropeptides, nucleic acids, nucleotides, lipids, and other biologically active components.
The journal is devoted to the rapid publication of regular papers containing the results of original research, reviews highlighting major developments in neurochemistry, short communications, new experimental studies that use neurochemical methodology, descriptions of new methods of value for neurochemistry, theoretical material suggesting novel principles and approaches to neurochemical problems, presentations of new hypotheses and significant findings, discussions, chronicles of congresses, meetings, and conferences with short presentations of the most sensational and timely reports, information on the activity of the Russian and International Neurochemical Societies, as well as advertisements of reagents and equipment.