Injective hardness condition for PCSPs

Demian Banakh, Marcin Kozik
{"title":"Injective hardness condition for PCSPs","authors":"Demian Banakh, Marcin Kozik","doi":"arxiv-2405.10774","DOIUrl":null,"url":null,"abstract":"We present a template for the Promise Constraint Satisfaction Problem (PCSP)\nwhich is NP-hard but does not satisfy the current state-of-the-art hardness\ncondition [ACMTCT'21]. We introduce a new \"injective\" condition based on the\nsmooth version of the layered PCP Theorem and use this new condition to confirm\nthat the problem is indeed NP-hard. In the second part of the article, we\nestablish a dichotomy for Boolean PCSPs defined by templates with polymorphisms\nin the set of linear threshold functions. The reasoning relies on the new\ninjective condition.","PeriodicalId":501024,"journal":{"name":"arXiv - CS - Computational Complexity","volume":"46 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-05-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Computational Complexity","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2405.10774","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We present a template for the Promise Constraint Satisfaction Problem (PCSP) which is NP-hard but does not satisfy the current state-of-the-art hardness condition [ACMTCT'21]. We introduce a new "injective" condition based on the smooth version of the layered PCP Theorem and use this new condition to confirm that the problem is indeed NP-hard. In the second part of the article, we establish a dichotomy for Boolean PCSPs defined by templates with polymorphisms in the set of linear threshold functions. The reasoning relies on the new injective condition.
PCSP 的注入硬度条件
我们提出了 "承诺约束满足问题"(PCSP)的模板,它是 NP-困难的,但不满足当前最先进的困难条件 [ACMTCT'21]。我们在分层 PCP 定理平滑版本的基础上引入了一个新的 "注入 "条件,并利用这一新条件证实该问题确实是 NP-困难的。在文章的第二部分,我们为线性阈值函数集合中具有多态性的模板定义的布尔 PCSP 建立了二分法。推理依赖于新的注入条件。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信