D. M. Karovetskaya, A. V. Medvedeva, E. V. Tokmacheva, S. A. Vasilyeva, A. V. Rebrova, E. A. Nikitina, B. F. Shchegolev, E. V. Savvateeva-Popova
{"title":"Stressors and Cognitive Activity: Search for Targets and General Mechanisms Using Drosophila Mutants","authors":"D. M. Karovetskaya, A. V. Medvedeva, E. V. Tokmacheva, S. A. Vasilyeva, A. V. Rebrova, E. A. Nikitina, B. F. Shchegolev, E. V. Savvateeva-Popova","doi":"10.1134/s1819712424010100","DOIUrl":null,"url":null,"abstract":"<p><b>Abstract</b>—According to modern concepts, biochemical cascades activated in response to stress also contribute to cognitive functions, such as learning and memory formation. Considering a conditioned reflex as an adaptation to the external environment, one can assume its occurrence as a reaction to external challenges, which, when reinforced, contribute to the formation of a conditioned connection, and in the absence, cause the development of a stress response. The metabolic activity of the body is inextricably linked with circadian rhythms, which determine the daily fluctuations in light, temperature, oxygen content, and magnetic field. The integration of these timers is carried out by a protein of the cryptochrome family (CRY), which functions as a blue light receptor and is known as a repressor of the main circadian transcription complex CLOCK/BMAL1. In order to develop methods for non-invasive correction of pathologies of the nervous system on a model object of genetics, mutant strains of <i>Drosophila</i> are used to study the relationship between adaptive mechanisms of the formation of a conditioned connection and the development of a stress response to a weakening of the magnetic field, hypoxia and temperature changes. The data are discussed in light of the role of the CRY/CLOCK/BMAL1 system as a link in magnetoreception, hypoxia, circadian rhythm regulation, cognitive functions, and DNA double-strand breaks in nerve ganglia (an indicator of the physiological activity of neurons)</p>","PeriodicalId":19119,"journal":{"name":"Neurochemical Journal","volume":"100 1","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2024-05-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neurochemical Journal","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1134/s1819712424010100","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract—According to modern concepts, biochemical cascades activated in response to stress also contribute to cognitive functions, such as learning and memory formation. Considering a conditioned reflex as an adaptation to the external environment, one can assume its occurrence as a reaction to external challenges, which, when reinforced, contribute to the formation of a conditioned connection, and in the absence, cause the development of a stress response. The metabolic activity of the body is inextricably linked with circadian rhythms, which determine the daily fluctuations in light, temperature, oxygen content, and magnetic field. The integration of these timers is carried out by a protein of the cryptochrome family (CRY), which functions as a blue light receptor and is known as a repressor of the main circadian transcription complex CLOCK/BMAL1. In order to develop methods for non-invasive correction of pathologies of the nervous system on a model object of genetics, mutant strains of Drosophila are used to study the relationship between adaptive mechanisms of the formation of a conditioned connection and the development of a stress response to a weakening of the magnetic field, hypoxia and temperature changes. The data are discussed in light of the role of the CRY/CLOCK/BMAL1 system as a link in magnetoreception, hypoxia, circadian rhythm regulation, cognitive functions, and DNA double-strand breaks in nerve ganglia (an indicator of the physiological activity of neurons)
期刊介绍:
Neurochemical Journal (Neirokhimiya) provides a source for the communication of the latest findings in all areas of contemporary neurochemistry and other fields of relevance (including molecular biology, biochemistry, physiology, neuroimmunology, pharmacology) in an afford to expand our understanding of the functions of the nervous system. The journal presents papers on functional neurochemistry, nervous system receptors, neurotransmitters, myelin, chromaffin granules and other components of the nervous system, as well as neurophysiological and clinical aspects, behavioral reactions, etc. Relevant topics include structure and function of the nervous system proteins, neuropeptides, nucleic acids, nucleotides, lipids, and other biologically active components.
The journal is devoted to the rapid publication of regular papers containing the results of original research, reviews highlighting major developments in neurochemistry, short communications, new experimental studies that use neurochemical methodology, descriptions of new methods of value for neurochemistry, theoretical material suggesting novel principles and approaches to neurochemical problems, presentations of new hypotheses and significant findings, discussions, chronicles of congresses, meetings, and conferences with short presentations of the most sensational and timely reports, information on the activity of the Russian and International Neurochemical Societies, as well as advertisements of reagents and equipment.