Pseudorandomness, symmetry, smoothing: I

Harm Derksen, Peter Ivanov, Chin Ho Lee, Emanuele Viola
{"title":"Pseudorandomness, symmetry, smoothing: I","authors":"Harm Derksen, Peter Ivanov, Chin Ho Lee, Emanuele Viola","doi":"arxiv-2405.13143","DOIUrl":null,"url":null,"abstract":"We prove several new results about bounded uniform and small-bias\ndistributions. A main message is that, small-bias, even perturbed with noise,\ndoes not fool several classes of tests better than bounded uniformity. We prove\nthis for threshold tests, small-space algorithms, and small-depth circuits. In\nparticular, we obtain small-bias distributions that 1) achieve an optimal lower bound on their statistical distance to any\nbounded-uniform distribution. This closes a line of research initiated by Alon,\nGoldreich, and Mansour in 2003, and improves on a result by O'Donnell and Zhao. 2) have heavier tail mass than the uniform distribution. This answers a\nquestion posed by several researchers including Bun and Steinke. 3) rule out a popular paradigm for constructing pseudorandom generators,\noriginating in a 1989 work by Ajtai and Wigderson. This again answers a\nquestion raised by several researchers. For branching programs, our result\nmatches a bound by Forbes and Kelley. Our small-bias distributions above are symmetric. We show that the xor of any\ntwo symmetric small-bias distributions fools any bounded function. Hence our\nexamples cannot be extended to the xor of two small-bias distributions, another\npopular paradigm whose power remains unknown. We also generalize and simplify\nthe proof of a result of Bazzi.","PeriodicalId":501024,"journal":{"name":"arXiv - CS - Computational Complexity","volume":"51 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-05-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Computational Complexity","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2405.13143","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We prove several new results about bounded uniform and small-bias distributions. A main message is that, small-bias, even perturbed with noise, does not fool several classes of tests better than bounded uniformity. We prove this for threshold tests, small-space algorithms, and small-depth circuits. In particular, we obtain small-bias distributions that 1) achieve an optimal lower bound on their statistical distance to any bounded-uniform distribution. This closes a line of research initiated by Alon, Goldreich, and Mansour in 2003, and improves on a result by O'Donnell and Zhao. 2) have heavier tail mass than the uniform distribution. This answers a question posed by several researchers including Bun and Steinke. 3) rule out a popular paradigm for constructing pseudorandom generators, originating in a 1989 work by Ajtai and Wigderson. This again answers a question raised by several researchers. For branching programs, our result matches a bound by Forbes and Kelley. Our small-bias distributions above are symmetric. We show that the xor of any two symmetric small-bias distributions fools any bounded function. Hence our examples cannot be extended to the xor of two small-bias distributions, another popular paradigm whose power remains unknown. We also generalize and simplify the proof of a result of Bazzi.
伪随机性、对称性、平滑性:I
我们证明了有界均匀分布和小偏置分布的几个新结果。其中一个主要信息是,小偏差分布即使受到噪声扰动,也不会比有界均匀分布更好地骗过几类测试。我们为阈值测试、小空间算法和小深度电路证明了这一点。特别是,我们得到的小偏差分布 1) 在与任何有界均匀分布的统计距离上达到了最优下限。这结束了阿隆、戈尔德里奇和曼苏尔在 2003 年发起的研究,并改进了奥唐纳和赵的结果。2) 具有比均匀分布更重的尾部质量。这回答了包括 Bun 和 Steinke 在内的一些研究人员提出的问题。3) 排除了 Ajtai 和 Wigderson 于 1989 年提出的一种构建伪随机发生器的流行范式。这再次回答了一些研究人员提出的问题。对于分支程序,我们的结果与 Forbes 和 Kelley 的约束相匹配。我们上述的小偏差分布是对称的。我们证明,任何两个对称小偏置分布的 xor 都能骗过任何有界函数。因此,我们的例子不能扩展到两个小偏置分布的 xor,这是另一种流行的范式,其威力仍然未知。我们还推广并简化了巴兹的一个结果的证明。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信