On integrable reductions of two-dimensional Toda-type lattices

I. T. Habibullin, A. U. Sakieva
{"title":"On integrable reductions of two-dimensional Toda-type lattices","authors":"I. T. Habibullin, A. U. Sakieva","doi":"arxiv-2405.10666","DOIUrl":null,"url":null,"abstract":"The article considers lattices of the two-dimensional Toda type, which can be\ninterpreted as dressing chains for spatially two-dimensional generalizations of\nequations of the class of nonlinear Schr\\\"odinger equations. The well-known\nexample of this kind of generalization is the Davey-Stewartson equation. It\nturns out that the finite-field reductions of these lattices, obtained by\nimposing cutoff boundary conditions of an appropriate type, are Darboux\nintegrable, i.e., they have complete sets of characteristic integrals. An\nalgorithm for constructing complete sets of characteristic integrals of finite\nfield systems using Lax pairs and Miura-type transformations is discussed.","PeriodicalId":501592,"journal":{"name":"arXiv - PHYS - Exactly Solvable and Integrable Systems","volume":"33 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-05-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - PHYS - Exactly Solvable and Integrable Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2405.10666","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The article considers lattices of the two-dimensional Toda type, which can be interpreted as dressing chains for spatially two-dimensional generalizations of equations of the class of nonlinear Schr\"odinger equations. The well-known example of this kind of generalization is the Davey-Stewartson equation. It turns out that the finite-field reductions of these lattices, obtained by imposing cutoff boundary conditions of an appropriate type, are Darboux integrable, i.e., they have complete sets of characteristic integrals. An algorithm for constructing complete sets of characteristic integrals of finite field systems using Lax pairs and Miura-type transformations is discussed.
论二维托达型网格的可积分还原
文章考虑了二维户田类型的晶格,它可以被解释为非线性薛定谔方程的空间二维广义化的敷料链。这类泛化的著名例子是 Davey-Stewartson 方程。事实证明,通过施加适当类型的截止边界条件而得到的这些晶格的有限场还原是达布可积分的,即它们具有完整的特征积分集。本文讨论了利用拉克斯对和米乌拉型变换构造有限场系统完整特征积分集的解析法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信