On Śankara Varman's (correct) and Mādhava's (incorrect) values for the circumferences of circles

V. N. Krishnachandran
{"title":"On Śankara Varman's (correct) and Mādhava's (incorrect) values for the circumferences of circles","authors":"V. N. Krishnachandran","doi":"arxiv-2405.11144","DOIUrl":null,"url":null,"abstract":"This paper examines what computational procedures \\'Sankara Varman\n(1774-1839) and Sangamagrama M\\=adhava (c. 1340 - 1425),\nastronomer-mathematicians of the Kerala school, might have used to arrive at\ntheir respective values for the circumferences of certain special circles (a\ncircle of diameter $10^{17}$ by the former and a circle of diameter $9\\times\n10^{11}$ by the latter). It is shown that if we choose the M\\=adhava-Gregory\nseries for $\\tfrac{\\pi}{6}=\\arctan (\\tfrac{1}{\\sqrt{3}})$ to compute $\\pi$ and\nthen use it compute the circumference of a circle of diameter $10^{17}$ and\nperform the computations by ignoring the fractional parts in the results of\nevery operation we get the value stated by \\'Sankara Varman. It is also shown\nthat, except in an unlikely case, none of the series representations of $\\pi$\nattributed to M\\=adhava produce the value for the circumference attributed to\nhim. The question how M\\=adhava did arrive at his value still remains\nunanswered.","PeriodicalId":501462,"journal":{"name":"arXiv - MATH - History and Overview","volume":"69 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-05-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - History and Overview","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2405.11144","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper examines what computational procedures \'Sankara Varman (1774-1839) and Sangamagrama M\=adhava (c. 1340 - 1425), astronomer-mathematicians of the Kerala school, might have used to arrive at their respective values for the circumferences of certain special circles (a circle of diameter $10^{17}$ by the former and a circle of diameter $9\times 10^{11}$ by the latter). It is shown that if we choose the M\=adhava-Gregory series for $\tfrac{\pi}{6}=\arctan (\tfrac{1}{\sqrt{3}})$ to compute $\pi$ and then use it compute the circumference of a circle of diameter $10^{17}$ and perform the computations by ignoring the fractional parts in the results of every operation we get the value stated by \'Sankara Varman. It is also shown that, except in an unlikely case, none of the series representations of $\pi$ attributed to M\=adhava produce the value for the circumference attributed to him. The question how M\=adhava did arrive at his value still remains unanswered.
关于Śankara Varman(正确)和 Mādhava(错误)的圆周率值
本文研究了喀拉拉学派的天文数学家桑卡拉-瓦尔曼(Sankara Varman,1774-1839 年)和桑加马格拉玛-穆德哈瓦(Sangamagrama M\adhava ,约 1340-1425 年)可能使用了哪些计算程序来得出他们各自对某些特殊圆(前者是直径为 $10^{17}$ 的圆,后者是直径为 $9\times10^{11}$ 的圆)周长的计算值。结果表明,如果我们选择$\tfrac{pi}{6}=\arctan (\tfrac{1}{sqrt{3}})$的M\=adhava-Gregory数列来计算$\pi$,然后用它来计算直径为$10^{17}$的圆的周长,并通过忽略每次运算结果中的小数部分来进行计算,我们就可以得到桑卡拉-瓦尔曼所说的值。计算结果还表明,除了一种不太可能的情况外,所有归功于摩揭陀的$^{pi}$数列表示法都不会产生归功于他的圆周率值。至于阿达瓦是如何得出他的值的,这个问题仍然没有答案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信