Heat expansion and zeta

IF 1.2 3区 数学 Q1 MATHEMATICS
Alain Connes
{"title":"Heat expansion and zeta","authors":"Alain Connes","doi":"10.1007/s43034-024-00358-5","DOIUrl":null,"url":null,"abstract":"<div><p>We compute the full asymptotic expansion of the heat kernel <span>\\(\\textrm{Tr}(\\exp (-tD^2))\\)</span> where <i>D</i> is, assuming RH, the self-adjoint operator whose spectrum is formed of the imaginary parts of non-trivial zeros of the Riemann zeta function. The coefficients of the expansion are explicit expressions involving Bernoulli and Euler numbers. We relate the divergent terms with the heat kernel expansion of the Dirac square root of the prolate wave operator investigated in our joint work with Henri Moscovici.</p></div>","PeriodicalId":48858,"journal":{"name":"Annals of Functional Analysis","volume":null,"pages":null},"PeriodicalIF":1.2000,"publicationDate":"2024-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of Functional Analysis","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s43034-024-00358-5","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

We compute the full asymptotic expansion of the heat kernel \(\textrm{Tr}(\exp (-tD^2))\) where D is, assuming RH, the self-adjoint operator whose spectrum is formed of the imaginary parts of non-trivial zeros of the Riemann zeta function. The coefficients of the expansion are explicit expressions involving Bernoulli and Euler numbers. We relate the divergent terms with the heat kernel expansion of the Dirac square root of the prolate wave operator investigated in our joint work with Henri Moscovici.

Abstract Image

热膨胀和 zeta
我们计算了热核 \(\textrm{Tr}(\exp (-tD^2))\)的完全渐近展开,其中 D 是假设为 RH 的自联合算子,其频谱由黎曼 zeta 函数非三维零点的虚部构成。展开的系数是涉及伯努利数和欧拉数的明确表达式。我们将发散项与我们与亨利-莫斯科维奇(Henri Moscovici)合作研究的凸面波算子的狄拉克平方根的热核展开联系起来。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Annals of Functional Analysis
Annals of Functional Analysis MATHEMATICS, APPLIED-MATHEMATICS
CiteScore
2.00
自引率
10.00%
发文量
64
期刊介绍: Annals of Functional Analysis is published by Birkhäuser on behalf of the Tusi Mathematical Research Group. Ann. Funct. Anal. is a peer-reviewed electronic journal publishing papers of high standards with deep results, new ideas, profound impact, and significant implications in all areas of functional analysis and all modern related topics (e.g., operator theory). Ann. Funct. Anal. normally publishes original research papers numbering 18 or fewer pages in the journal’s style. Longer papers may be submitted to the Banach Journal of Mathematical Analysis or Advances in Operator Theory. Ann. Funct. Anal. presents the best paper award yearly. The award in the year n is given to the best paper published in the years n-1 and n-2. The referee committee consists of selected editors of the journal.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信