Rogue waves excitation on zero-background in the (2+1)-dimensional KdV equation

Jie-Fang Zhang, Mei-zhen Jin, Meng-yang Zhang
{"title":"Rogue waves excitation on zero-background in the (2+1)-dimensional KdV equation","authors":"Jie-Fang Zhang, Mei-zhen Jin, Meng-yang Zhang","doi":"arxiv-2405.11228","DOIUrl":null,"url":null,"abstract":"In this letters, we propose a novel self-mapping transformation of the (2+1)\ndimensional KdV equation, and construct rather general classes of solutions\nwith decaying property with three arbitrary functions of time. The highlight of\nthis method is that it allows us to generate various of basic rogue waves\nexcited on zero-background, including the exponentially decaying line-soliton\nand dromion as well as the algebraically decaying lump in the -plane turn out\nto be special cases of these solutions. Our findings unravels new interesting\nrelations between rogue wave and line-soliton, dromion and lump.","PeriodicalId":501370,"journal":{"name":"arXiv - PHYS - Pattern Formation and Solitons","volume":"17 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-05-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - PHYS - Pattern Formation and Solitons","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2405.11228","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this letters, we propose a novel self-mapping transformation of the (2+1) dimensional KdV equation, and construct rather general classes of solutions with decaying property with three arbitrary functions of time. The highlight of this method is that it allows us to generate various of basic rogue waves excited on zero-background, including the exponentially decaying line-soliton and dromion as well as the algebraically decaying lump in the -plane turn out to be special cases of these solutions. Our findings unravels new interesting relations between rogue wave and line-soliton, dromion and lump.
(2+1)-dimensional KdV方程中零背景上的游荡波激励
在这封信中,我们提出了(2+1)维KdV方程的一种新颖的自映射变换,并构建了具有三个任意时间函数衰变特性的相当普遍的解类。该方法的亮点在于,它允许我们生成各种在零背景上激发的基本流氓波,包括指数衰变的线-索利子和二罗米子,以及在-平面上代数衰变的块状物,这些都是这些解的特例。我们的发现揭示了流氓波与线-玻里子、二romion 和块体之间新的有趣关系。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信