Non-reciprocal breathing solitons

Martin Brandenbourger, Oleksandr Gamayun, Jonas Veenstra, Freek van Gorp, Hans Terwisscha-Dekker, Jean-Sébastien Caux, Corentin Coulais
{"title":"Non-reciprocal breathing solitons","authors":"Martin Brandenbourger, Oleksandr Gamayun, Jonas Veenstra, Freek van Gorp, Hans Terwisscha-Dekker, Jean-Sébastien Caux, Corentin Coulais","doi":"arxiv-2405.10562","DOIUrl":null,"url":null,"abstract":"Breathing solitons consist of a fast beating wave within a compact envelope\nof stable shape and velocity. They manifest themselves in a variety of contexts\nsuch as plasmas, optical fibers and cold atoms, but have remained elusive when\nenergy conservation is broken. Here, we report on the observation of breathing,\nunidirectional, arbitrarily long-lived solitons in non-reciprocal,\nnon-conservative active metamaterials. Combining precision desktop experiments,\nnumerical simulations and perturbation theory on generalizations of the\nsine-Gordon and nonlinear Schr\\\"odinger equations, we demonstrate that\nunidirectional breathers generically emerge in weakly nonlinear non-reciprocal\nmaterials, and that their dynamics are governed by an unstable fixed point.\nCrucially, breathing solitons can persist for arbitrarily long times provided:\n(i) this fixed point displays a bifurcation upon reachin a delicate balance\nbetween energy injection and dissipation; (ii) the initial conditions allow the\ndynamics to reach this bifurcation point. Our work establishes non-reciprocity\nas a promising avenue to generate stable nonlinear unidirectional waves, and\ncould be generalized beyond metamaterials to optics, soft matter and\nsuperconducting circuits.","PeriodicalId":501370,"journal":{"name":"arXiv - PHYS - Pattern Formation and Solitons","volume":"69 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-05-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - PHYS - Pattern Formation and Solitons","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2405.10562","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Breathing solitons consist of a fast beating wave within a compact envelope of stable shape and velocity. They manifest themselves in a variety of contexts such as plasmas, optical fibers and cold atoms, but have remained elusive when energy conservation is broken. Here, we report on the observation of breathing, unidirectional, arbitrarily long-lived solitons in non-reciprocal, non-conservative active metamaterials. Combining precision desktop experiments, numerical simulations and perturbation theory on generalizations of the sine-Gordon and nonlinear Schr\"odinger equations, we demonstrate that unidirectional breathers generically emerge in weakly nonlinear non-reciprocal materials, and that their dynamics are governed by an unstable fixed point. Crucially, breathing solitons can persist for arbitrarily long times provided: (i) this fixed point displays a bifurcation upon reachin a delicate balance between energy injection and dissipation; (ii) the initial conditions allow the dynamics to reach this bifurcation point. Our work establishes non-reciprocity as a promising avenue to generate stable nonlinear unidirectional waves, and could be generalized beyond metamaterials to optics, soft matter and superconducting circuits.
非互惠呼吸孤子
呼吸孤子由形状和速度稳定的紧凑包络内的快速跳动波组成。它们在等离子体、光纤和冷原子等各种环境中都有表现,但当能量守恒被打破时,它们仍然难以捉摸。在这里,我们报告了在非互惠、非守恒有源超材料中观察到的呼吸、单向、任意长寿命孤子。结合精确的桌面实验、数值模拟以及对正弦-戈登方程和非线性薛定谔方程广义的扰动理论,我们证明了在弱非线性非互惠材料中通常会出现单向呼吸孤子,而且它们的动力学受一个不稳定的固定点控制。最重要的是,呼吸孤子可以持续存在任意长的时间,条件是:(i)该固定点在达到能量注入和耗散之间的微妙平衡时显示分叉;(ii)初始条件允许动力学达到该分叉点。我们的研究将非互易性作为产生稳定的非线性单向波的一个很有前途的途径,并可从超材料推广到光学、软物质和超导电路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信