Płonka adjunction

Pub Date : 2024-05-25 DOI:10.1093/jigpal/jzae064
J Climent Vidal, E Cosme Llópez
{"title":"Płonka adjunction","authors":"J Climent Vidal, E Cosme Llópez","doi":"10.1093/jigpal/jzae064","DOIUrl":null,"url":null,"abstract":"Let $\\varSigma $ be a signature without $0$-ary operation symbols and $\\textsf{Sl}$ the category of semilattices. Then, after defining and investigating the categories $\\int ^{\\textsf{Sl}}\\textrm{Isys}_{\\varSigma }$, of inductive systems of $\\varSigma $-algebras over all semilattices, which are ordered pairs $\\mathscr{A}= (\\textbf{I},\\mathscr{A})$ where $\\textbf{I}$ is a semilattice and $\\mathscr{A}$ an inductive system of $\\varSigma $-algebras relative to $\\textbf{I}$, and PłAlg$ (\\varSigma )$, of Płonka $\\varSigma $-algebras, which are ordered pairs $(\\textbf{A},D)$ where $\\textbf{A}$ is a $\\varSigma $-algebra and $D$ a Płonka operator for $\\textbf{A}$, i.e. in the traditional terminology, a partition function for $\\textbf{A}$, we prove the main result of the paper: There exists an adjunction, which we call the Płonka adjunction, from $\\int ^{\\textsf{Sl}}\\textrm{Isys}_{\\varSigma }$ to PłAlg$ (\\varSigma )$.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-05-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1093/jigpal/jzae064","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Let $\varSigma $ be a signature without $0$-ary operation symbols and $\textsf{Sl}$ the category of semilattices. Then, after defining and investigating the categories $\int ^{\textsf{Sl}}\textrm{Isys}_{\varSigma }$, of inductive systems of $\varSigma $-algebras over all semilattices, which are ordered pairs $\mathscr{A}= (\textbf{I},\mathscr{A})$ where $\textbf{I}$ is a semilattice and $\mathscr{A}$ an inductive system of $\varSigma $-algebras relative to $\textbf{I}$, and PłAlg$ (\varSigma )$, of Płonka $\varSigma $-algebras, which are ordered pairs $(\textbf{A},D)$ where $\textbf{A}$ is a $\varSigma $-algebra and $D$ a Płonka operator for $\textbf{A}$, i.e. in the traditional terminology, a partition function for $\textbf{A}$, we prove the main result of the paper: There exists an adjunction, which we call the Płonka adjunction, from $\int ^{\textsf{Sl}}\textrm{Isys}_{\varSigma }$ to PłAlg$ (\varSigma )$.
分享
查看原文
膜连接
让 $\varSigma $ 是一个没有 $0$ary 运算符号的签名,$\textsf{Sl}$ 是半格的范畴。然后,在定义并研究了所有半网格上 $\varSigma $ 算法的归纳系统的类别 $int ^{textsf{Sl}}\textrm{Isys}_{\varSigma }$之后,这些类别是有序对 $\mathscr{A}= (\textbf{I}、\其中 $\textbf{I}$ 是一个半网格,而 $\mathscr{A}$ 是相对于 $\textbf{I}$ 的 $\varSigma $-gebras 的归纳系统,以及 PłAlg$ (\varSigma )$、的 Płonka $\varSigma $-代数,它们是有序的一对 $(\textbf{A},D)$,其中 $\textbf{A}$ 是一个 $\varSigma $-代数,而 $D$ 是 $\textbf{A}$ 的 Płonka 算子,即即用传统术语来说,$\textbf{A}$ 的分割函数,我们证明了本文的主要结果:存在一个从 $int ^{\textsf{Sl}}\textrm{Isys}_{\varSigma }$ 到 PłAlg$ (\varSigma )$ 的邻接,我们称之为 Płonka 邻接。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信