{"title":"Płonka adjunction","authors":"J Climent Vidal, E Cosme Llópez","doi":"10.1093/jigpal/jzae064","DOIUrl":null,"url":null,"abstract":"Let $\\varSigma $ be a signature without $0$-ary operation symbols and $\\textsf{Sl}$ the category of semilattices. Then, after defining and investigating the categories $\\int ^{\\textsf{Sl}}\\textrm{Isys}_{\\varSigma }$, of inductive systems of $\\varSigma $-algebras over all semilattices, which are ordered pairs $\\mathscr{A}= (\\textbf{I},\\mathscr{A})$ where $\\textbf{I}$ is a semilattice and $\\mathscr{A}$ an inductive system of $\\varSigma $-algebras relative to $\\textbf{I}$, and PłAlg$ (\\varSigma )$, of Płonka $\\varSigma $-algebras, which are ordered pairs $(\\textbf{A},D)$ where $\\textbf{A}$ is a $\\varSigma $-algebra and $D$ a Płonka operator for $\\textbf{A}$, i.e. in the traditional terminology, a partition function for $\\textbf{A}$, we prove the main result of the paper: There exists an adjunction, which we call the Płonka adjunction, from $\\int ^{\\textsf{Sl}}\\textrm{Isys}_{\\varSigma }$ to PłAlg$ (\\varSigma )$.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-05-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1093/jigpal/jzae064","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Let $\varSigma $ be a signature without $0$-ary operation symbols and $\textsf{Sl}$ the category of semilattices. Then, after defining and investigating the categories $\int ^{\textsf{Sl}}\textrm{Isys}_{\varSigma }$, of inductive systems of $\varSigma $-algebras over all semilattices, which are ordered pairs $\mathscr{A}= (\textbf{I},\mathscr{A})$ where $\textbf{I}$ is a semilattice and $\mathscr{A}$ an inductive system of $\varSigma $-algebras relative to $\textbf{I}$, and PłAlg$ (\varSigma )$, of Płonka $\varSigma $-algebras, which are ordered pairs $(\textbf{A},D)$ where $\textbf{A}$ is a $\varSigma $-algebra and $D$ a Płonka operator for $\textbf{A}$, i.e. in the traditional terminology, a partition function for $\textbf{A}$, we prove the main result of the paper: There exists an adjunction, which we call the Płonka adjunction, from $\int ^{\textsf{Sl}}\textrm{Isys}_{\varSigma }$ to PłAlg$ (\varSigma )$.