{"title":"Nuclear Embeddings of Morrey Sequence Spaces and Smoothness Morrey Spaces","authors":"Dorothee D. Haroske, Leszek Skrzypczak","doi":"10.1007/s40840-024-01709-0","DOIUrl":null,"url":null,"abstract":"<p>We study nuclear embeddings for spaces of Morrey type, both in its sequence space version and as smoothness spaces of functions defined on a bounded domain <span>\\(\\Omega \\subset {{\\mathbb {R}}}^{{d}}\\)</span>. This covers, in particular, the meanwhile well-known and completely answered situation for spaces of Besov and Triebel-Lizorkin type defined on bounded domains which has been considered for a long time. The complete result was obtained only recently. Compact embeddings for function spaces of Morrey type have already been studied in detail, also concerning their entropy and approximation numbers. We now prove the first and complete nuclearity result in this context. The concept of nuclearity has already been introduced by Grothendieck in 1955. Again we rely on suitable wavelet decomposition techniques and the famous Tong result (1969) which characterises nuclear diagonal operators acting between sequence spaces of <span>\\(\\ell _r\\)</span> type, <span>\\(1\\le r\\le \\infty \\)</span>.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-05-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s40840-024-01709-0","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
We study nuclear embeddings for spaces of Morrey type, both in its sequence space version and as smoothness spaces of functions defined on a bounded domain \(\Omega \subset {{\mathbb {R}}}^{{d}}\). This covers, in particular, the meanwhile well-known and completely answered situation for spaces of Besov and Triebel-Lizorkin type defined on bounded domains which has been considered for a long time. The complete result was obtained only recently. Compact embeddings for function spaces of Morrey type have already been studied in detail, also concerning their entropy and approximation numbers. We now prove the first and complete nuclearity result in this context. The concept of nuclearity has already been introduced by Grothendieck in 1955. Again we rely on suitable wavelet decomposition techniques and the famous Tong result (1969) which characterises nuclear diagonal operators acting between sequence spaces of \(\ell _r\) type, \(1\le r\le \infty \).
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.