Classification of Aortic Stenosis Patients via ECG-Independent Multi-Site Measurements of Cardiac-Induced Accelerations and Angular Velocities at the Skin Level

IF 2.7 Q3 ENGINEERING, BIOMEDICAL
Chiara Romano;Emanuele Maiorana;Annunziata Nusca;Simone Circhetta;Sergio Silvestri;Schena Emiliano;Gian Paolo Ussia;Carlo Massaroni
{"title":"Classification of Aortic Stenosis Patients via ECG-Independent Multi-Site Measurements of Cardiac-Induced Accelerations and Angular Velocities at the Skin Level","authors":"Chiara Romano;Emanuele Maiorana;Annunziata Nusca;Simone Circhetta;Sergio Silvestri;Schena Emiliano;Gian Paolo Ussia;Carlo Massaroni","doi":"10.1109/OJEMB.2024.3402151","DOIUrl":null,"url":null,"abstract":"<italic>Goal:</i>\n To evaluate the suitability of seismocardiogram (SCG) and gyrocardiogram (GCG) recorded at the skin level to classify aortic stenosis (AS) patients from healthy volunteers, and to determine the optimal sensor position for the classification. \n<italic>Methods:</i>\n SCG and GCG were recorded along three axes at five chest locations of fifteen healthy subjects and AS patients. Signal frames underwent feature extraction in frequency and time-frequency domains. Then, binary classification was performed through three machine learning and three deep learning methods, considering SCG, GCG, and their combination. \n<italic>Results:</i>\n The highest classification accuracies were achieved using Support Vector Machine (SVM) classifier, with the best sensor locations being at the mitral valve for SCG signals (92.3% accuracy) and at the pulmonary valve for GCG (92.1%). Combining SCG and GCG data allows for further improvement in the achievable accuracy (93.5%). Jointly exploiting SCG and GCG signals and both SVM- and ResNet18-based classifiers, 40 s of monitoring allows for reaching 97.2% accuracy with a single sensor on the pulmonary valve. \n<italic>Conclusions:</i>\n Combining SCG and GCG with adequate machine learning and deep learning classifiers allows reliable classification of AS patients.","PeriodicalId":33825,"journal":{"name":"IEEE Open Journal of Engineering in Medicine and Biology","volume":null,"pages":null},"PeriodicalIF":2.7000,"publicationDate":"2024-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10534834","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Open Journal of Engineering in Medicine and Biology","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10534834/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Goal: To evaluate the suitability of seismocardiogram (SCG) and gyrocardiogram (GCG) recorded at the skin level to classify aortic stenosis (AS) patients from healthy volunteers, and to determine the optimal sensor position for the classification. Methods: SCG and GCG were recorded along three axes at five chest locations of fifteen healthy subjects and AS patients. Signal frames underwent feature extraction in frequency and time-frequency domains. Then, binary classification was performed through three machine learning and three deep learning methods, considering SCG, GCG, and their combination. Results: The highest classification accuracies were achieved using Support Vector Machine (SVM) classifier, with the best sensor locations being at the mitral valve for SCG signals (92.3% accuracy) and at the pulmonary valve for GCG (92.1%). Combining SCG and GCG data allows for further improvement in the achievable accuracy (93.5%). Jointly exploiting SCG and GCG signals and both SVM- and ResNet18-based classifiers, 40 s of monitoring allows for reaching 97.2% accuracy with a single sensor on the pulmonary valve. Conclusions: Combining SCG and GCG with adequate machine learning and deep learning classifiers allows reliable classification of AS patients.
通过独立于心电图的多部位皮肤级心动加速度和角速度测量对主动脉瓣狭窄患者进行分类
目标:评估在皮肤水平记录的地震心动图(SCG)和陀螺心动图(GCG)是否适用于将主动脉瓣狭窄(AS)患者从健康志愿者中分类,并确定分类的最佳传感器位置。方法:记录 SCG 和 GCG在 15 名健康受试者和 AS 患者的五个胸部位置沿三个轴线记录 SCG 和 GCG。信号帧经过频率域和时频域特征提取。然后,通过三种机器学习方法和三种深度学习方法对 SCG、GCG 及其组合进行二元分类。结果:支持向量机(SVM)分类器的分类准确率最高,SCG 信号的最佳传感器位置在二尖瓣(准确率为 92.3%),GCG 信号的最佳传感器位置在肺动脉瓣(准确率为 92.1%)。结合 SCG 和 GCG 数据可进一步提高准确率(93.5%)。联合利用 SCG 和 GCG 信号以及基于 SVM 和 ResNet18 的分类器,40 秒的监测可使肺动脉瓣上的单个传感器达到 97.2% 的准确率。结论将 SCG 和 GCG 与适当的机器学习和深度学习分类器相结合,可以对 AS 患者进行可靠的分类。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
9.50
自引率
3.40%
发文量
20
审稿时长
10 weeks
期刊介绍: The IEEE Open Journal of Engineering in Medicine and Biology (IEEE OJEMB) is dedicated to serving the community of innovators in medicine, technology, and the sciences, with the core goal of advancing the highest-quality interdisciplinary research between these disciplines. The journal firmly believes that the future of medicine depends on close collaboration between biology and technology, and that fostering interaction between these fields is an important way to advance key discoveries that can improve clinical care.IEEE OJEMB is a gold open access journal in which the authors retain the copyright to their papers and readers have free access to the full text and PDFs on the IEEE Xplore® Digital Library. However, authors are required to pay an article processing fee at the time their paper is accepted for publication, using to cover the cost of publication.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信