{"title":"High‐dimensional sparse classification using exponential weighting with empirical hinge loss","authors":"The Tien Mai","doi":"10.1111/stan.12342","DOIUrl":null,"url":null,"abstract":"In this study, we address the problem of high‐dimensional binary classification. Our proposed solution involves employing an aggregation technique founded on exponential weights and empirical hinge loss. Through the employment of a suitable sparsity‐inducing prior distribution, we demonstrate that our method yields favorable theoretical results on prediction error. The efficiency of our procedure is achieved through the utilization of Langevin Monte Carlo, a gradient‐based sampling approach. To illustrate the effectiveness of our approach, we conduct comparisons with the logistic Lasso on simulated data and a real dataset. Our method frequently demonstrates superior performance compared to the logistic Lasso.","PeriodicalId":51178,"journal":{"name":"Statistica Neerlandica","volume":"50 1","pages":""},"PeriodicalIF":1.4000,"publicationDate":"2024-05-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Statistica Neerlandica","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1111/stan.12342","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 0
Abstract
In this study, we address the problem of high‐dimensional binary classification. Our proposed solution involves employing an aggregation technique founded on exponential weights and empirical hinge loss. Through the employment of a suitable sparsity‐inducing prior distribution, we demonstrate that our method yields favorable theoretical results on prediction error. The efficiency of our procedure is achieved through the utilization of Langevin Monte Carlo, a gradient‐based sampling approach. To illustrate the effectiveness of our approach, we conduct comparisons with the logistic Lasso on simulated data and a real dataset. Our method frequently demonstrates superior performance compared to the logistic Lasso.
期刊介绍:
Statistica Neerlandica has been the journal of the Netherlands Society for Statistics and Operations Research since 1946. It covers all areas of statistics, from theoretical to applied, with a special emphasis on mathematical statistics, statistics for the behavioural sciences and biostatistics. This wide scope is reflected by the expertise of the journal’s editors representing these areas. The diverse editorial board is committed to a fast and fair reviewing process, and will judge submissions on quality, correctness, relevance and originality. Statistica Neerlandica encourages transparency and reproducibility, and offers online resources to make data, code, simulation results and other additional materials publicly available.