Application of Response Surface Methodology on the Optimization of Chromite Recovery from the South African Middle Group Chromite Seams

IF 2.5 3区 材料科学 Q3 GREEN & SUSTAINABLE SCIENCE & TECHNOLOGY
Chris Ndoe Ya Leza Kaseba, Willie Nheta
{"title":"Application of Response Surface Methodology on the Optimization of Chromite Recovery from the South African Middle Group Chromite Seams","authors":"Chris Ndoe Ya Leza Kaseba, Willie Nheta","doi":"10.1007/s40831-024-00820-7","DOIUrl":null,"url":null,"abstract":"<p>The aim of this study was to optimize the recovery of chromite from the chrome plant tailings of the South African Middle Group chromite seams using a Wilfley shaking table. The optimization process employed the response surface methodology in conjunction with the central composite design. The independent variables considered in the investigation included the tilt angle (°), sample feed rate (g/min), table vibration (Hz), water flow rate (L/H), and particle size range (µm). On the other hand, the recovery (%), grade (% Cr<sub>2</sub>O<sub>3</sub>), Cr/Fe ratio, and separation efficiency (SE) (%) were determined as the response variables. Based on the characterization results, the sample was identified as a low-grade chromite containing 19.86% Cr<sub>2</sub>O<sub>3</sub> and 18.12% Fe<sub>2</sub>O<sub>3</sub> with a Cr/Fe ratio of 1.07. The bulk gangue material was well-liberated and rich in MgO (10.45%), Al<sub>2</sub>O<sub>3</sub> (12.10%), and SiO<sub>2</sub> (33.70%). The particle size distribution of the sample was 80% passing 106 µm. The optimal values for recovery, grade, Cr/Fe ratio and SE were found to be 71.59%, 36.97% Cr<sub>2</sub>O<sub>3</sub>, 1.52 and 30% respectively. The corresponding operating conditions were a tilt angle of 5.88°, a sample feed rate of 175 g/min, a table vibration of 44.5 Hz, a water flow rate of 366.16 L/H, and a particle size range of − 106 + 53 µm.</p><h3 data-test=\"abstract-sub-heading\">Graphical Abstract</h3>\n","PeriodicalId":17160,"journal":{"name":"Journal of Sustainable Metallurgy","volume":"14 1","pages":""},"PeriodicalIF":2.5000,"publicationDate":"2024-05-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Sustainable Metallurgy","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1007/s40831-024-00820-7","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"GREEN & SUSTAINABLE SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

The aim of this study was to optimize the recovery of chromite from the chrome plant tailings of the South African Middle Group chromite seams using a Wilfley shaking table. The optimization process employed the response surface methodology in conjunction with the central composite design. The independent variables considered in the investigation included the tilt angle (°), sample feed rate (g/min), table vibration (Hz), water flow rate (L/H), and particle size range (µm). On the other hand, the recovery (%), grade (% Cr2O3), Cr/Fe ratio, and separation efficiency (SE) (%) were determined as the response variables. Based on the characterization results, the sample was identified as a low-grade chromite containing 19.86% Cr2O3 and 18.12% Fe2O3 with a Cr/Fe ratio of 1.07. The bulk gangue material was well-liberated and rich in MgO (10.45%), Al2O3 (12.10%), and SiO2 (33.70%). The particle size distribution of the sample was 80% passing 106 µm. The optimal values for recovery, grade, Cr/Fe ratio and SE were found to be 71.59%, 36.97% Cr2O3, 1.52 and 30% respectively. The corresponding operating conditions were a tilt angle of 5.88°, a sample feed rate of 175 g/min, a table vibration of 44.5 Hz, a water flow rate of 366.16 L/H, and a particle size range of − 106 + 53 µm.

Graphical Abstract

Abstract Image

响应面方法在优化南非中组铬铁矿层铬铁矿回收中的应用
本研究的目的是利用威尔弗利摇床优化从南非中间组铬铁矿层的铬厂尾矿中回收铬铁矿的过程。优化过程采用了响应面方法和中心复合设计。调查中考虑的自变量包括倾斜角 (°)、样品给料量 (g/min)、振动台振动 (Hz)、水流量 (L/H) 和粒度范围 (µm)。另一方面,回收率 (%)、品位 (% Cr2O3)、铬/铁比率和分离效率 (SE) (%) 被确定为响应变量。根据表征结果,样品被确定为低品位铬铁矿,含 19.86% 的 Cr2O3 和 18.12% 的 Fe2O3,Cr/Fe 比为 1.07。大块煤矸石物质富含氧化镁(10.45%)、氧化铝(12.10%)和二氧化硅(33.70%)。样品的粒度分布为 80% 通过 106 微米。回收率、品位、铬/铁比率和 SE 的最佳值分别为 71.59%、36.97% Cr2O3、1.52 和 30%。相应的操作条件为:倾斜角 5.88°,样品进料速率 175 克/分钟,工作台振动 44.5 赫兹,水流量 366.16 升/小时,粒度范围 - 106 + 53 微米。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Sustainable Metallurgy
Journal of Sustainable Metallurgy Materials Science-Metals and Alloys
CiteScore
4.00
自引率
12.50%
发文量
151
期刊介绍: Journal of Sustainable Metallurgy is dedicated to presenting metallurgical processes and related research aimed at improving the sustainability of metal-producing industries, with a particular emphasis on materials recovery, reuse, and recycling. Its editorial scope encompasses new techniques, as well as optimization of existing processes, including utilization, treatment, and management of metallurgically generated residues. Articles on non-technical barriers and drivers that can affect sustainability will also be considered.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信