Stability of a class of solutions of the barotropic vorticity equation on a sphereequation on a sphere

IF 1.1 3区 数学 Q2 MATHEMATICS, APPLIED
Yuri N. Skiba
{"title":"Stability of a class of solutions of the barotropic vorticity equation on a sphereequation on a sphere","authors":"Yuri N. Skiba","doi":"10.4310/dpde.2024.v21.n3.a1","DOIUrl":null,"url":null,"abstract":"The linear and nonlinear stability of modons and Wu-Verkley waves, which are weak solutions of the barotropic vorticity equation on a rotating sphere, are analyzed. Necessary conditions for normal mode instability are obtained, the growth rate of unstable modes is estimated, and the orthogonality of unstable modes to the basic flow is shown. The Liapunov instability of dipole modons in the norm associated with enstrophy is proven.","PeriodicalId":50562,"journal":{"name":"Dynamics of Partial Differential Equations","volume":null,"pages":null},"PeriodicalIF":1.1000,"publicationDate":"2024-05-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Dynamics of Partial Differential Equations","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4310/dpde.2024.v21.n3.a1","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

The linear and nonlinear stability of modons and Wu-Verkley waves, which are weak solutions of the barotropic vorticity equation on a rotating sphere, are analyzed. Necessary conditions for normal mode instability are obtained, the growth rate of unstable modes is estimated, and the orthogonality of unstable modes to the basic flow is shown. The Liapunov instability of dipole modons in the norm associated with enstrophy is proven.
气压涡度方程在球面上的一类解的稳定性
分析了模态波和吴-维克里波的线性和非线性稳定性,模态波和吴-维克里波是旋转球体上各向同性涡度方程的弱解。得到了正常模式不稳定性的必要条件,估计了不稳定模式的增长率,并证明了不稳定模式与基本流的正交性。证明了偶极子模态在常模中的李雅普诺夫不稳定性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.00
自引率
0.00%
发文量
7
审稿时长
>12 weeks
期刊介绍: Publishes novel results in the areas of partial differential equations and dynamical systems in general, with priority given to dynamical system theory or dynamical aspects of partial differential equations.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信