{"title":"A general hyperelastic model for rubber-like materials incorporating strain-rate and temperature","authors":"Dianjie Jiang, Zhanjiang Wang, Xiaoyang Wang","doi":"10.1177/00952443241254926","DOIUrl":null,"url":null,"abstract":"A comprehensive hyperelastic model that precisely forecasts the mechanical characteristics of materials with rubber-like qualities is presented. This model relies on the well-established five-parameter Mooney-Rivlin model, which is then extended to incorporate strain rate dependent and temperature dependent term. To validate its accuracy, experimental data from ethylene propylene diene monomer (EPDM) rubber materials was utilized to compare with the model prediction. Hyperelastic stress-strain curves were collected from a variety of materials that were subjected to varying temperatures and strain rates to improve the model’s applicability. Its prediction results are compared against the collected experimental data, resulting in consistent and reliable outcomes. The simplified form of the model not only establishes an effective framework for characterizing and predicting the mechanical response of materials that resemble rubber under different working conditions but makes the coding and implementation of finite element analysis easier.","PeriodicalId":15613,"journal":{"name":"Journal of Elastomers & Plastics","volume":"55 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-05-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Elastomers & Plastics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1177/00952443241254926","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
A comprehensive hyperelastic model that precisely forecasts the mechanical characteristics of materials with rubber-like qualities is presented. This model relies on the well-established five-parameter Mooney-Rivlin model, which is then extended to incorporate strain rate dependent and temperature dependent term. To validate its accuracy, experimental data from ethylene propylene diene monomer (EPDM) rubber materials was utilized to compare with the model prediction. Hyperelastic stress-strain curves were collected from a variety of materials that were subjected to varying temperatures and strain rates to improve the model’s applicability. Its prediction results are compared against the collected experimental data, resulting in consistent and reliable outcomes. The simplified form of the model not only establishes an effective framework for characterizing and predicting the mechanical response of materials that resemble rubber under different working conditions but makes the coding and implementation of finite element analysis easier.