Rethinking the production and publication of machine-reusable expressions of research findings

Markus Stocker, Lauren Snyder, Matthew Anfuso, Oliver Ludwig, Freya Thießen, Kheir Eddine Farfar, Muhammad Haris, Allard Oelen, Mohamad Yaser Jaradeh
{"title":"Rethinking the production and publication of machine-reusable expressions of research findings","authors":"Markus Stocker, Lauren Snyder, Matthew Anfuso, Oliver Ludwig, Freya Thießen, Kheir Eddine Farfar, Muhammad Haris, Allard Oelen, Mohamad Yaser Jaradeh","doi":"arxiv-2405.13129","DOIUrl":null,"url":null,"abstract":"Literature is the primary expression of scientific knowledge and an important\nsource of research data. However, scientific knowledge expressed in narrative\ntext documents is not inherently machine reusable. To facilitate knowledge\nreuse, e.g. for synthesis research, scientific knowledge must be extracted from\narticles and organized into databases post-publication. The high time costs and\ninaccuracies associated with completing these activities manually has driven\nthe development of techniques that automate knowledge extraction. Tackling the\nproblem with a different mindset, we propose a pre-publication approach, known\nas reborn, that ensures scientific knowledge is born reusable, i.e. produced in\na machine-reusable format during knowledge production. We implement the\napproach using the Open Research Knowledge Graph infrastructure for FAIR\nscientific knowledge organization. We test the approach with three use cases,\nand discuss the role of publishers and editors in scaling the approach. Our\nresults suggest that the proposed approach is superior compared to classical\nmanual and semi-automated post-publication extraction techniques in terms of\nknowledge richness and accuracy as well as technological simplicity.","PeriodicalId":501285,"journal":{"name":"arXiv - CS - Digital Libraries","volume":"14 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-05-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Digital Libraries","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2405.13129","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Literature is the primary expression of scientific knowledge and an important source of research data. However, scientific knowledge expressed in narrative text documents is not inherently machine reusable. To facilitate knowledge reuse, e.g. for synthesis research, scientific knowledge must be extracted from articles and organized into databases post-publication. The high time costs and inaccuracies associated with completing these activities manually has driven the development of techniques that automate knowledge extraction. Tackling the problem with a different mindset, we propose a pre-publication approach, known as reborn, that ensures scientific knowledge is born reusable, i.e. produced in a machine-reusable format during knowledge production. We implement the approach using the Open Research Knowledge Graph infrastructure for FAIR scientific knowledge organization. We test the approach with three use cases, and discuss the role of publishers and editors in scaling the approach. Our results suggest that the proposed approach is superior compared to classical manual and semi-automated post-publication extraction techniques in terms of knowledge richness and accuracy as well as technological simplicity.
重新思考制作和出版可通过机器重复使用的研究成果表达方式
文献是科学知识的主要表达方式,也是研究数据的重要来源。然而,以叙述性文本文档表达的科学知识本身并不能被机器重复使用。为了促进知识的重复使用,例如用于综合研究,必须从文章中提取科学知识,并在出版后将其整理到数据库中。人工完成这些工作的时间成本高、误差大,因此推动了知识提取自动化技术的发展。为了以不同的思维方式解决这个问题,我们提出了一种名为 "重生 "的出版前方法,以确保科学知识生来就可重复使用,即在知识生产过程中生成机器可重复使用的格式。我们利用开放式研究知识图谱基础架构实现了这一方法,用于 FAIR 科学知识组织。我们用三个用例对该方法进行了测试,并讨论了出版商和编辑在扩展该方法中的作用。我们的研究结果表明,与传统的人工和半自动出版后提取技术相比,我们提出的方法在知识丰富度、准确性和技术简易性方面都更胜一筹。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信