InterMat: accelerating band offset prediction in semiconductor interfaces with DFT and deep learning†

IF 6.2 Q1 CHEMISTRY, MULTIDISCIPLINARY
Kamal Choudhary and Kevin F. Garrity
{"title":"InterMat: accelerating band offset prediction in semiconductor interfaces with DFT and deep learning†","authors":"Kamal Choudhary and Kevin F. Garrity","doi":"10.1039/D4DD00031E","DOIUrl":null,"url":null,"abstract":"<p >We introduce a computational framework (InterMat) to predict band offsets of semiconductor interfaces using density functional theory (DFT) and graph neural networks (GNN). As a first step, we benchmark OptB88vdW generalized gradient approximation (GGA) work functions and electron affinities for surfaces against experimental data with accuracies of 0.29 eV and 0.39 eV, respectively. Similarly, we evaluate band offset values using independent unit (IU) and alternate slab junction (ASJ) models leading to accuracies of 0.45 eV and 0.22 eV, respectively. We use bulk band structure calculations with the TBmBJ meta-GGA functional to correct for band gap underestimation when predicting conduction band properties. During ASJ structure generation, we use Zur's algorithm along with a unified GNN force-field to tackle the conformation challenges of interface design. At present, we have 607 surface work functions calculated with DFT, from which we can compute 183 921 IU band offsets as well as 593 directly calculated ASJ band offsets. Finally, as the space of all possible heterojunctions is too large to simulate with DFT, we develop generalized GNN models to quickly predict bulk band edges with an accuracy of 0.26 eV. We show how these models can be used to predict relevant quantities including ionization potentials, electron affinities, and IU-based band offsets. We establish simple rules using the above models to pre-screen potential semiconductor devices from a vast pool of nearly 1.4 trillion candidate interfaces. InterMat is available at website: https://github.com/usnistgov/intermat.</p>","PeriodicalId":72816,"journal":{"name":"Digital discovery","volume":" 7","pages":" 1365-1377"},"PeriodicalIF":6.2000,"publicationDate":"2024-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2024/dd/d4dd00031e?page=search","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Digital discovery","FirstCategoryId":"1085","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2024/dd/d4dd00031e","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

We introduce a computational framework (InterMat) to predict band offsets of semiconductor interfaces using density functional theory (DFT) and graph neural networks (GNN). As a first step, we benchmark OptB88vdW generalized gradient approximation (GGA) work functions and electron affinities for surfaces against experimental data with accuracies of 0.29 eV and 0.39 eV, respectively. Similarly, we evaluate band offset values using independent unit (IU) and alternate slab junction (ASJ) models leading to accuracies of 0.45 eV and 0.22 eV, respectively. We use bulk band structure calculations with the TBmBJ meta-GGA functional to correct for band gap underestimation when predicting conduction band properties. During ASJ structure generation, we use Zur's algorithm along with a unified GNN force-field to tackle the conformation challenges of interface design. At present, we have 607 surface work functions calculated with DFT, from which we can compute 183 921 IU band offsets as well as 593 directly calculated ASJ band offsets. Finally, as the space of all possible heterojunctions is too large to simulate with DFT, we develop generalized GNN models to quickly predict bulk band edges with an accuracy of 0.26 eV. We show how these models can be used to predict relevant quantities including ionization potentials, electron affinities, and IU-based band offsets. We establish simple rules using the above models to pre-screen potential semiconductor devices from a vast pool of nearly 1.4 trillion candidate interfaces. InterMat is available at website: https://github.com/usnistgov/intermat.

Abstract Image

InterMat:利用 DFT 和深度学习加速半导体界面的带偏移预测
我们引入了一个计算框架(InterMat),利用密度泛函理论(DFT)和图神经网络(GNN)预测半导体界面的带偏移。第一步,我们根据实验数据对 OptB88vdW 广义梯度近似 (GGA) 工作函数和表面电子亲和力进行了基准测试,精确度分别为 0.29 eV 和 0.39 eV。同样,我们使用独立单元(IU)和交替板结(ASJ)模型评估了带偏移值,精确度分别为 0.45 eV 和 0.22 eV。在预测导带特性时,我们使用 TBmBJ 元 GGA 函数进行体带结构计算,以纠正带隙低估。在 ASJ 结构生成过程中,我们使用祖尔算法和统一的 GNN 力场来解决界面设计中的构象难题。目前,我们通过 DFT 计算出了 607 个表面功函数,从中可以计算出 183921 个 IU 带偏移和 593 个直接计算的 ASJ 带偏移。最后,由于所有可能的异质结空间太大,无法用 DFT 进行模拟,我们开发了广义 GNN 模型,以 0.26 eV 的精度快速预测体带边缘。我们展示了如何利用这些模型预测电离势、电子亲和力和基于 IU 的带偏移等相关量。我们利用上述模型建立了简单的规则,从将近 1.4 万亿个候选界面的庞大池中预先筛选出潜在的半导体器件。InterMat 可在网站上获取:\url{https://github.com/usnistgov/intermat}
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.80
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信