"Microstructure Modes" -- Disentangling the Joint Dynamics of Prices & Order Flow

Salma Elomari-Kessab, Guillaume Maitrier, Julius Bonart, Jean-Philippe Bouchaud
{"title":"\"Microstructure Modes\" -- Disentangling the Joint Dynamics of Prices & Order Flow","authors":"Salma Elomari-Kessab, Guillaume Maitrier, Julius Bonart, Jean-Philippe Bouchaud","doi":"arxiv-2405.10654","DOIUrl":null,"url":null,"abstract":"Understanding the micro-dynamics of asset prices in modern electronic order\nbooks is crucial for investors and regulators. In this paper, we use an order\nby order Eurostoxx database spanning over 3 years to analyze the joint dynamics\nof prices and order flow. In order to alleviate various problems caused by\nhigh-frequency noise, we propose a double coarse-graining procedure that allows\nus to extract meaningful information at the minute time scale. We use Principal\nComponent Analysis to construct \"microstructure modes\" that describe the most\ncommon flow/return patterns and allow one to separate them into bid-ask\nsymmetric and bid-ask anti-symmetric. We define and calibrate a Vector\nAuto-Regressive (VAR) model that encodes the dynamical evolution of these\nmodes. The parameters of the VAR model are found to be extremely stable in\ntime, and lead to relatively high $R^2$ prediction scores, especially for\nsymmetric liquidity modes. The VAR model becomes marginally unstable as more\nlags are included, reflecting the long-memory nature of flows and giving some\nfurther credence to the possibility of \"endogenous liquidity crises\". Although\nvery satisfactory on several counts, we show that our VAR framework does not\naccount for the well known square-root law of price impact.","PeriodicalId":501139,"journal":{"name":"arXiv - QuantFin - Statistical Finance","volume":"218 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-05-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - QuantFin - Statistical Finance","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2405.10654","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Understanding the micro-dynamics of asset prices in modern electronic order books is crucial for investors and regulators. In this paper, we use an order by order Eurostoxx database spanning over 3 years to analyze the joint dynamics of prices and order flow. In order to alleviate various problems caused by high-frequency noise, we propose a double coarse-graining procedure that allows us to extract meaningful information at the minute time scale. We use Principal Component Analysis to construct "microstructure modes" that describe the most common flow/return patterns and allow one to separate them into bid-ask symmetric and bid-ask anti-symmetric. We define and calibrate a Vector Auto-Regressive (VAR) model that encodes the dynamical evolution of these modes. The parameters of the VAR model are found to be extremely stable in time, and lead to relatively high $R^2$ prediction scores, especially for symmetric liquidity modes. The VAR model becomes marginally unstable as more lags are included, reflecting the long-memory nature of flows and giving some further credence to the possibility of "endogenous liquidity crises". Although very satisfactory on several counts, we show that our VAR framework does not account for the well known square-root law of price impact.
"微观结构模式" -- 解读价格与订单流的共同动态变化
了解现代电子订单簿中资产价格的微观动态对投资者和监管者至关重要。在本文中,我们利用欧洲斯托克交易所超过 3 年的逐笔订单数据库来分析价格和订单流的共同动态。为了缓解高频噪声带来的各种问题,我们提出了一种双重粗粒化程序,使我们能够在微小的时间尺度上提取有意义的信息。我们使用主成分分析法(PrincipalComponent Analysis)构建 "微观结构模式",描述最常见的流动/回报模式,并将其分为买入-卖出不对称模式和买入-卖出反对称模式。我们定义并校准了一个矢量自回归(VAR)模型,该模型可对这些模式的动态演变进行编码。我们发现,VAR 模型的参数在时间上非常稳定,并能带来相对较高的 R^2$ 预测得分,尤其是对于对称流动性模式。随着滞后期的增加,VAR 模型变得略微不稳定,这反映了流动的长记忆性质,并进一步证实了 "内生流动性危机 "的可能性。尽管在一些方面非常令人满意,但我们发现我们的 VAR 框架并没有考虑到众所周知的价格影响平方根定律。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信