Local Spectral Multiplicity of Selfadjoint Couplings with General Interface Conditions

IF 0.8 3区 数学 Q2 MATHEMATICS
Sergey Simonov, Harald Woracek
{"title":"Local Spectral Multiplicity of Selfadjoint Couplings with General Interface Conditions","authors":"Sergey Simonov, Harald Woracek","doi":"10.1007/s00020-024-02767-6","DOIUrl":null,"url":null,"abstract":"<p>We consider selfadjoint operators obtained by pasting a finite number of boundary relations with one-dimensional boundary space. A typical example of such an operator is the Schrödinger operator on a star-graph with a finite number of finite or infinite edges and an interface condition at the common vertex. A wide class of “selfadjoint” interface conditions, subject to an assumption which is generically satisfied, is considered. We determine the spectral multiplicity function on the singular spectrum (continuous as well as point) in terms of the spectral data of decoupled operators.</p>","PeriodicalId":13658,"journal":{"name":"Integral Equations and Operator Theory","volume":"22 1","pages":""},"PeriodicalIF":0.8000,"publicationDate":"2024-05-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Integral Equations and Operator Theory","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00020-024-02767-6","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

We consider selfadjoint operators obtained by pasting a finite number of boundary relations with one-dimensional boundary space. A typical example of such an operator is the Schrödinger operator on a star-graph with a finite number of finite or infinite edges and an interface condition at the common vertex. A wide class of “selfadjoint” interface conditions, subject to an assumption which is generically satisfied, is considered. We determine the spectral multiplicity function on the singular spectrum (continuous as well as point) in terms of the spectral data of decoupled operators.

具有一般界面条件的自相关耦合的局部谱多重性
我们考虑通过将有限数量的边界关系与一维边界空间粘贴而得到的自相关算子。这种算子的一个典型例子是星形图上的薛定谔算子,该星形图具有有限数量的有限或无限边,在公共顶点处有一个界面条件。我们考虑了一大类 "自联合 "界面条件,这些条件一般都满足一个假设。我们根据解耦算子的谱数据确定奇异谱(连续谱和点谱)上的谱多重性函数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.60
自引率
0.00%
发文量
36
审稿时长
6 months
期刊介绍: Integral Equations and Operator Theory (IEOT) is devoted to the publication of current research in integral equations, operator theory and related topics with emphasis on the linear aspects of the theory. The journal reports on the full scope of current developments from abstract theory to numerical methods and applications to analysis, physics, mechanics, engineering and others. The journal consists of two sections: a main section consisting of refereed papers and a second consisting of short announcements of important results, open problems, information, etc.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信