{"title":"A Stackelberg game-based on-ramp merging controller for connected automated vehicles in mixed traffic flow","authors":"Yangsheng Jiang , Hongyu Chen , Guosheng Xiao , Hongwei Cong , Zhihong Yao","doi":"10.1080/19427867.2024.2359251","DOIUrl":null,"url":null,"abstract":"<div><div>This paper proposes a game theory-based on-ramp merging controller for connected automated vehicles (CAVs) in mixed traffic flow. First, a two-layer decision-making framework based on the Stackelberg game is designed to consider the fuel consumption and safety payoffs of mixed traffic flow under different driving behaviors. The upper layer of the framework determines the optimal merging decision (i.e. merging time and location) for on-ramp vehicles (RVs) based on the Stackelberg game. The lower layer optimizes the merging trajectory of CAVs to reduce energy consumption and safety risks during the ramp-merging process. Then, a driving behavior estimation algorithm is developed to describe the differences in mainline vehicles (MLVs) response to the merging behavior of RVs. Finally, the simulation experiments are adopted to verify the effectiveness and stability of the proposed framework. The results indicated that, the proposed framework promotes environmental protection, operational efficiency, and traffic flow stability in different traffic scenarios.</div></div>","PeriodicalId":48974,"journal":{"name":"Transportation Letters-The International Journal of Transportation Research","volume":"17 3","pages":"Pages 423-441"},"PeriodicalIF":3.3000,"publicationDate":"2025-03-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Transportation Letters-The International Journal of Transportation Research","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/org/science/article/pii/S1942786724000390","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"TRANSPORTATION","Score":null,"Total":0}
引用次数: 0
Abstract
This paper proposes a game theory-based on-ramp merging controller for connected automated vehicles (CAVs) in mixed traffic flow. First, a two-layer decision-making framework based on the Stackelberg game is designed to consider the fuel consumption and safety payoffs of mixed traffic flow under different driving behaviors. The upper layer of the framework determines the optimal merging decision (i.e. merging time and location) for on-ramp vehicles (RVs) based on the Stackelberg game. The lower layer optimizes the merging trajectory of CAVs to reduce energy consumption and safety risks during the ramp-merging process. Then, a driving behavior estimation algorithm is developed to describe the differences in mainline vehicles (MLVs) response to the merging behavior of RVs. Finally, the simulation experiments are adopted to verify the effectiveness and stability of the proposed framework. The results indicated that, the proposed framework promotes environmental protection, operational efficiency, and traffic flow stability in different traffic scenarios.
期刊介绍:
Transportation Letters: The International Journal of Transportation Research is a quarterly journal that publishes high-quality peer-reviewed and mini-review papers as well as technical notes and book reviews on the state-of-the-art in transportation research.
The focus of Transportation Letters is on analytical and empirical findings, methodological papers, and theoretical and conceptual insights across all areas of research. Review resource papers that merge descriptions of the state-of-the-art with innovative and new methodological, theoretical, and conceptual insights spanning all areas of transportation research are invited and of particular interest.