Foams with flat connections and algebraic K-theory

David Gepner, Mee Seong Im, Mikhail Khovanov, Nitu Kitchloo
{"title":"Foams with flat connections and algebraic K-theory","authors":"David Gepner, Mee Seong Im, Mikhail Khovanov, Nitu Kitchloo","doi":"arxiv-2405.14465","DOIUrl":null,"url":null,"abstract":"This paper proposes a connection between algebraic K-theory and foam\ncobordisms, where foams are stratified manifolds with singularities of a\nprescribed form. We consider $n$-dimensional foams equipped with a flat bundle\nof finitely-generated projective $R$-modules over each facet of the foam,\ntogether with gluing conditions along the subfoam of singular points. In a\nsuitable sense which will become clear, a vertex (or the smallest stratum) of\nan $n$-dimensional foam replaces an $(n+1)$-simplex with a total ordering of\nvertices. We show that the first K-theory group of a ring $R$ can be identified\nwith the cobordism group of decorated 1-foams embedded in the plane. A similar\nrelation between the $n$-th algebraic K-theory group of a ring $R$ and the\ncobordism group of decorated $n$-foams embedded in $\\mathbb{R}^{n+1}$ is\nexpected for $n>1$. An analogous correspondence is proposed for arbitrary exact\ncategories. Modifying the embedding and other conditions on the foams may lead\nto new flavors of K-theory groups.","PeriodicalId":501143,"journal":{"name":"arXiv - MATH - K-Theory and Homology","volume":"41 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - K-Theory and Homology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2405.14465","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper proposes a connection between algebraic K-theory and foam cobordisms, where foams are stratified manifolds with singularities of a prescribed form. We consider $n$-dimensional foams equipped with a flat bundle of finitely-generated projective $R$-modules over each facet of the foam, together with gluing conditions along the subfoam of singular points. In a suitable sense which will become clear, a vertex (or the smallest stratum) of an $n$-dimensional foam replaces an $(n+1)$-simplex with a total ordering of vertices. We show that the first K-theory group of a ring $R$ can be identified with the cobordism group of decorated 1-foams embedded in the plane. A similar relation between the $n$-th algebraic K-theory group of a ring $R$ and the cobordism group of decorated $n$-foams embedded in $\mathbb{R}^{n+1}$ is expected for $n>1$. An analogous correspondence is proposed for arbitrary exact categories. Modifying the embedding and other conditions on the foams may lead to new flavors of K-theory groups.
具有平面连接的泡沫和代数 K 理论
本文提出了代数 K 理论与泡沫共线性之间的联系,其中泡沫是具有规定形式奇点的分层流形。我们考虑了 $n$ 维泡沫,泡沫的每个面上都有一个有限生成的投影 $R$ 模块的平束,以及奇点子泡沫的粘合条件。在合适的意义上,一个 $n$ 维泡沫的顶点(或最小层)取代了一个具有顶点总排序的 $(n+1)$ 复数。我们证明,环 $R$ 的第一 K 理论群可以与嵌入平面的装饰 1 泡沫的共线性群相提并论。当 $n>1$ 时,环 $R$ 的第 $n$ 个代数 K 理论群与嵌入 $mathbb{R}^{n+1}$ 的装饰 $n$ 泡沫的共线性群之间也有类似的关系。对于任意精确范畴,也提出了类似的对应关系。修改泡沫的嵌入和其他条件可能会导致新的K理论群。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信